Thyroid Investigations

  • Victoria J. Stokes
  • Rabia Arfan
  • Theingi Aung
  • Violet Fazal-SandersonEmail author


Thyroid dysfunction may result in inappropriate hormone secretion, mass effects, or a combination of both problems. Taking a relevant history and performing a thorough examination is the first step to reaching the correct diagnosis. Investigations should be selected according to the clinical findings and may be used to confirm clinical suspicions, to rule out serious pathology, and to establish the severity of the dysfunction. Blood tests are usually the first line, with biochemistry to confirm the functional status of the gland and, if appropriate, testing for autoantibodies to confirm autoimmunity. Ultrasound is the preferred method for detecting intra-thyroid lesions, with a sensitivity of 2 mm for cystic, and 3 mm for solid lesions. CT and MRI are of limited utility outside of tumour staging. Functional imaging is useful for differentiating thyroiditis and hyperthyroidism due to autoimmunity, toxic nodule, or multinodular goitre. This chapter describes the clinical features of different thyroid disorders; discusses thyroid investigations and their clinical utility; and highlights specific tests used for specific disorders.


Thyroid hormone homeostasis Imaging Clinical assessment Thyroid autoantibodies TSH-oma 



Beta human chorionic gonadotropin


Computer tomography


Fine needle aspiration/cytology






Magnetic resonance imaging


Resistance to thyroid stimulating hormone


Antithyroglobulin antibody


Thyroid imaging reporting and data system


Antithyroid peroxidase antibody


Thyroid stimulating hormone


Thyroid stimulating hormone secreting pituitary adenoma

TSH receptor antibody

Thyroid stimulating hormone receptor antibody




  1. Abramowicz MJ, Duprez L, Parma J, et al. Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland. J Clin Invest. 1997;99:3018.CrossRefGoogle Scholar
  2. Abs R, Stevenaert A, Beckers A. Autonomously functioning thyroid nodules in a patient with a thyrotropin-secreting pituitary adenoma: possible cause-effect relationship. Eur J Endocrinol. 1994;131:355–8.CrossRefGoogle Scholar
  3. Beck-Peccoz P, Piscitelli G, Amr S, Ballabio M, Bassetti M, Giannattasio G, Spada A, Nissim M, Weintraub BD, Faglia G. Endocrine, biochemical, and morphological studies of a pituitary adenoma secreting growth hormone, thyrotropin (TSH), and a-subunit: evidence for secretion of TSH with increased bioactivity. J Clin Endocrinol Metab. 1986;62:704–11.CrossRefGoogle Scholar
  4. Beck-Peccoz P, Brucker-Davis F, Persani L, Smallridge RC, Weintraub BD. Thyrotropin-secreting pituitary tumors. Endocr Rev. 1996;17:610–38.PubMedGoogle Scholar
  5. Beck-Peccoz P, Lania A, Beckers A, Chatterjee K, Wemeau JL. 2013 European thyroid association guidelines for the diagnosis and treatment of thyrotropin-secreting pituitary tumors. Eur Thyroid J. 2013;2(2):76–82.CrossRefGoogle Scholar
  6. Beck-Peccoz P, Lania A, Persani L. Chapter 24. TSH-producing adenomas. In: Jameson JL, DeGroot LJ, editors. Endocrinology. 7th ed. Philadelphia: W.B. Saunders; 2015. p. 266–74.Google Scholar
  7. Bjerner J, Olsen KH, Bormer OP, Nustad K. Human heterophilic antibodies display specificity for murine IgG subclasses. Clin Biochem. 2005;38(5):465–72.CrossRefGoogle Scholar
  8. Bonavita JA, Mayo J, Babb J, et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone? AJR Am J Roentgenol. 2009;193:207.CrossRefGoogle Scholar
  9. Brucker-Davis F, Oldfield EH, Skarulis MC, Doppman JL, Weintraub BD. Thyrotropin-secreting pituitary tumors: diagnostic criteria, thyroid hormone sensitivity, and treatment outcome in 25 patients followed at the National Institutes of Health. J Clin Endocrinol Metab. 1999;84:476–86.CrossRefGoogle Scholar
  10. Brunese L, Romeo A, Iorio S, et al. A new marker for diagnosis of thyroid papillary cancer: B-flow twinkling sign. J Ultrasound Med. 2008;27:1187.CrossRefGoogle Scholar
  11. Cappelli C, Pirola I, Cumetti D, et al. Is the anteroposterior and transverse diameter ratio of nonpalpable thyroid nodules a sonographic criteria for recommending fine-needle aspiration cytology? Clin Endocrinol (Oxf). 2005;63:689.CrossRefGoogle Scholar
  12. Cappelli C, Castellano M, Pirola I, et al. The predictive value of ultrasound findings in the management of thyroid nodules. QJM. 2007;100:29.CrossRefGoogle Scholar
  13. Cavallo A, Johnson DN, White MG, et al. Thyroid nodule size at ultrasound as a predictor of malignancy and final pathologic size. Thyroid. 2017;27:641.CrossRefGoogle Scholar
  14. Cohen O, Pinhas-Hamiel O, Sivan E, et al. Serial in utero ultrasonographic measurements of the fetal thyroid: a new complementary tool in the management of maternal hyperthyroidism in pregnancy. Prenat Diagn. 2003;23:740.CrossRefGoogle Scholar
  15. Daumerie C, Ayoubi S, Rahier J, et al. [Prevalence of thyroid cancer in hot nodules]. Ann Chir. 1998;52(5):444–8.Google Scholar
  16. Deshpande P, Lucas M, Brunt S, Lucas A, Hollingsworth P, Bundell C. Low level autoantibodies can be frequently detected in the general Australian population. Pathology. 2016;48(5):483–90.CrossRefGoogle Scholar
  17. Gagné N, Parma J, Deal C, et al. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: are athyreosis and ectopic thyroid distinct entities? J Clin Endocrinol Metab. 1998;83:1771.PubMedGoogle Scholar
  18. Gasparoni P, Rubello D, Persani L, Beck-Peccoz P. Unusual association between a thyrotropin-secreting pituitary adenoma and a papillary thyroid carcinoma. Thyroid. 1998;8:181–3.CrossRefGoogle Scholar
  19. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.CrossRefGoogle Scholar
  20. Jakobsen JA. Ultrasound contrast agents: clinical applications. Eur Radiol. 2001;11:1329.CrossRefGoogle Scholar
  21. Kaplan IV, Levinson SS. When is a heterophile antibody not a heterophile antibody? When it is an antibody against a specific immunogen. Clin Chem. 1999;45(5):616–8.PubMedGoogle Scholar
  22. Kiernan CM, Solórzano CC. Bethesda category III, IV, and V thyroid nodules: can nodule size help predict malignancy? J Am Coll Surg. 2017;225:77–82.CrossRefGoogle Scholar
  23. Kishida M, Otsuka F, Kataoka H, Yokota K, Oishi T, Yamauchi T, Doihara H, Tamiya T, Mimura Y, Ogura T, Makino H. Hyperthyroidism in a patient with TSH-producing pituitary adenoma coexisting with thyroid papillary adenocarcinoma. Endocr J. 2000;47:731–8.CrossRefGoogle Scholar
  24. Kwak JY, Kim EK, Son EJ, et al. Papillary thyroid carcinoma manifested solely as microcalcifications on sonography. AJR Am J Roentgenol. 2007;189:227.CrossRefGoogle Scholar
  25. Levinson SS, Miller JJ. Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clin Chim Acta. 2002;325(1–2):1–15.CrossRefGoogle Scholar
  26. Losa M, Giovanelli M, Persani L, Mortini P, Faglia G, Beck-Peccoz P. Criteria of cure and follow-up of central hyperthyroidism due to thyrotropin-secreting pituitary adenomas. J Clin Endocrinol Metab. 1996;81:3086–90.Google Scholar
  27. Losa M, Magnani P, Mortini P, Persani L, Acerno S, Giugni E, Fazio F, Beck-Peccoz P, Giovanelli M. Indium-111 pentetreotide single-photon emission tomography in patients with TSH-secreting pituitary adenomas: correlation with the effect of a single administration of octreotide on serum TSH levels. Eur J Nucl Med. 1997;24:728–31.PubMedGoogle Scholar
  28. Luton D, Le Gac I, Vuillard E, et al. Management of Graves’ disease during pregnancy: the key role of fetal thyroid gland monitoring. J Clin Endocrinol Metab. 2005;90:6093.CrossRefGoogle Scholar
  29. Malchiodi E, Profka E, Ferrante E, Sala E, Verrua E, Campi I, Lania AG, Arosio M, Locatelli M, Mortini P, Losa M, Beck-Peccoz P, Spada A, Mantovani G. Thyrotropin-secreting pituitary adenomas: outcome of pituitary surgery and irradiation. J Clin Endocrinol Metab. 2014;99(6):2069–76.CrossRefGoogle Scholar
  30. Mandel SJ. Diagnostic use of ultrasonography in patients with nodular thyroid disease. Endocr Pract. 2004;10(3):246–52.CrossRefGoogle Scholar
  31. Miki H, Oshimo K, Inoue H, et al. Incidence of ultrasonographically-detected thyroid nodules in healthy adults. Tokushima J Exp Med. 1993;40(1-2):43–6.PubMedGoogle Scholar
  32. Nguyen HD, Galitz MS, Mai VQ, Clyde PW, Glister BC, Shakir MK. Management of coexisting thyrotropin/growth-hormone-secreting pituitary adenoma and papillary thyroid carcinoma: a therapeutic challenge. Thyroid. 2010;20(1):99–103.CrossRefGoogle Scholar
  33. Perticone F, Pigliaru F, Mariotti S, Deiana L, Furlani L, Mortini P, Losa M. Is the incidence of differentiated thyroid cancer increased in patients with thyrotropin-secreting adenomas? Report of three cases from a large consecutive series. Thyroid. 2015;25(4):417–24.CrossRefGoogle Scholar
  34. Poggi M, Monti S, Pascucci C, Toscano V. A rare case of follicular thyroid carcinoma in a patient with thyrotropin-secreting pituitary adenoma. Am J Med Sci. 2009;337(6):462–5.CrossRefGoogle Scholar
  35. Preissner CM, Dodge LA, O’Kane DJ, Singh RJ, Grebe SK. Prevalence of heterophilic antibody interference in eight automated tumor marker immunoassays. Clin Chem. 2005;51(1):208–10.CrossRefGoogle Scholar
  36. Schussler GC. The thyroxine-binding proteins. Thyroid. 2000;10(2):141–9.CrossRefGoogle Scholar
  37. Singaporewalla RM, Hwee J, Lang TU, Desai V. Clinico-pathological correlation of thyroid nodule ultrasound and cytology using the TIRADS and Bethesda Classifications. World J Surg. 2017;41:1807–11.CrossRefGoogle Scholar
  38. Sipos JA. Advances in ultrasound for the diagnosis and management of thyroid cancer. Thyroid. 2009;19:1363.CrossRefGoogle Scholar
  39. Tiosano D, Pannain S, Vassart G, et al. The hypothyroidism in an inbred kindred with congenital thyroid hormone and glucocorticoid deficiency is due to a mutation producing a truncated thyrotropin receptor. Thyroid. 1999;9:887.CrossRefGoogle Scholar
  40. Tozzoli R, Bagnasco M, Giavarina D, Bizzaro N. TSH receptor autoantibody immunoassay in patients with Graves’ disease: improvement of diagnostic accuracy over different generations of methods. Systematic review and meta-analysis. Autoimmun Rev. 2012;12(2):107–13.CrossRefGoogle Scholar
  41. Warren DJ, Bjerner J, Paus E, Bormer OP, Nustad K. Use of an in vivo biotinylated singlechain antibody as capture reagent in an immunometric assay to decrease the incidence of interference from heterophilic antibodies. Clinl chem. 2005;51(5):830–8.CrossRefGoogle Scholar
  42. Wiersinga WM. Thyroid hormone replacement therapy. Hormone Res. 2001;56(Suppl 1):74–81.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Victoria J. Stokes
    • 1
  • Rabia Arfan
    • 2
  • Theingi Aung
    • 3
  • Violet Fazal-Sanderson
    • 3
    Email author
  1. 1.Endocrinology and MetabolismOxford Radcliffe Hospitals NHS Foundation Trust, Churchill HospitalOxfordUK
  2. 2.Thames Valley Deanary, Centre for Diabetes and Endocrinology, Royal Berkshire Hospital NHS Foundation TrustReadingUK
  3. 3.Centre for Diabetes and Endocrinology, Royal Berkshire Hospital NHS Foundation TrustReadingUK

Personalised recommendations