Advertisement

Constrained (Verifiable) Pseudorandom Function from Functional Encryption

  • Pratish Datta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

This paper presents a constrained pseudorandom function (CPRF) supporting constraints realizable by polynomial-size circuits, assuming the existence of (public key) functional encryption (FE) with standard polynomial security against arbitrary collusions. We further augment our CPRF construction with the verifiability feature under the same assumption. Earlier such constructions either work for very restricted settings or rely on highly powerful yet little-understood cryptographic objects such as multilinear maps or indistinguishability obfuscation (IO). Although, there are known transformations from FE to IO, the reductions suffer from an exponential security loss and hence cannot be directly employed to replace IO with FE in cryptographic constructions at the expense of only a polynomial loss. Thus, our results open up a new pathway towards realizing CPRF and its numerous extensions, which are interesting cryptographic primitives in their own right and, moreover, have already been shown instrumental in a staggering range of applications, both in classical as well as in cutting edge cryptography, based on progressively weaker and well-studied cryptographic building blocks. Besides, our work can also be interpreted as yet another stepping stone towards establishing FE as a substitute for IO in cryptographic applications, which is an active research direction of recent times. In order to achieve our results we build upon the prefix puncturing technique developed by Garg et al. [CRYPTO 2016, EUROCRYPT 2017].

Keywords

Constrained pseudorandom function Constrained verifiable pseudorandom function Functional encryption Polynomial hardness 

References

  1. 1.
    Abusalah, H., Fuchsbauer, G.: Constrained PRFs for unbounded inputs with short keys. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 445–463. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_24CrossRefGoogle Scholar
  2. 2.
    Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded inputs. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 413–428. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_24CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_15CrossRefGoogle Scholar
  4. 4.
    Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730Google Scholar
  5. 5.
    Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_2CrossRefGoogle Scholar
  6. 6.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Foundations of Computer Science, FOCS 2015, pp. 171–190. IEEE (2015)Google Scholar
  7. 7.
    Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_17CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_26CrossRefzbMATHGoogle Scholar
  9. 9.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_15CrossRefGoogle Scholar
  11. 11.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_1CrossRefGoogle Scholar
  13. 13.
    Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\(^1\) from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_16CrossRefGoogle Scholar
  14. 14.
    Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom functions: verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522Google Scholar
  15. 15.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_26CrossRefGoogle Scholar
  16. 16.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Constrained pseudorandom functions for unconstrained inputs revisited: achieving verifiability and key delegation. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 463–493. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_16CrossRefGoogle Scholar
  17. 17.
    Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_5CrossRefGoogle Scholar
  18. 18.
    Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10879-7_7CrossRefGoogle Scholar
  19. 19.
    Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_5CrossRefGoogle Scholar
  20. 20.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1CrossRefGoogle Scholar
  21. 21.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput. 45(3), 882–929 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_20CrossRefGoogle Scholar
  23. 23.
    Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_6CrossRefzbMATHGoogle Scholar
  24. 24.
    Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with polynomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 419–442. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_16CrossRefGoogle Scholar
  25. 25.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_11CrossRefGoogle Scholar
  27. 27.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_25CrossRefGoogle Scholar
  28. 28.
    Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained pseudorandom functions. Cryptology ePrint Archive, Report 2014/720Google Scholar
  29. 29.
    Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudorandom functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_4CrossRefzbMATHGoogle Scholar
  30. 30.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 669–684. ACM (2013)Google Scholar
  31. 31.
    Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science, pp. 120–130. IEEE (1999)Google Scholar
  32. 32.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_6CrossRefGoogle Scholar
  33. 33.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing-STOC 2014, pp. 475–484. ACM (2014)Google Scholar
  34. 34.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesMusashino-shiJapan

Personalised recommendations