An Almost Non-interactive Order Preserving Encryption Scheme

  • Jingjing Guo
  • Jianfeng Wang
  • Zhiwei Zhang
  • Xiaofeng ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)


Order preserving encryption (OPE) is an encryption scheme that the ciphertexts retain the order of their underlying plaintexts. It could be used to perform the order comparison or the efficient range query over encrypted data. Recently, plenty of work has been proposed on the construction of OPE scheme. Nevertheless, many existing OPE schemes require multiple rounds \((O(\log n))\) of interaction. As a result, real-time online, network delay and communication transmission failure are the efficiency challenges for the order comparison or range query. In this paper, we propose an almost non-interactive OPE scheme called BF-OPE. The BF-OPE scheme works by integrating Bloom filter and prefix encoding. They enable the encrypted data items to be compared when a token is provided by the client. Furthermore, the padding technique has been used to hide the frequency information both in data items and query ranges on the ciphertexts. Finally, we prove that the proposed scheme is secure with respect to the leakage function \(\mathcal {L}_I\).


Range query Order preserving encryption Order revealing encryption Ideal security 



This work was supported by the National Cryptography Development Fund (No. MMJJ20180110).


  1. 1.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for numeric data. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), Paris, France, pp. 563–574 (2004)Google Scholar
  2. 2.
    Arge, L.: The buffer tree: a technique for designing batched external data structures. Algorithmica 37(1), 1–24 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), Sofia, Bulgaria, pp. 563–594 (2015)Google Scholar
  5. 5.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011). Scholar
  6. 6.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). Scholar
  7. 7.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). Scholar
  8. 8.
    Chen, X., Huang, X., Li, J., Ma, J., Lou, W., Wong, D.S.: New algorithms for secure outsourcing of large-scale systems of linear equations. IEEE Trans. Inf. Forensics Secur. 10(1), 69–78 (2015)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases with efficient updates. IEEE Trans. Dependable Secure Comput. 12(5), 546–556 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396 (2014)CrossRefGoogle Scholar
  11. 11.
    Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over large database with incremental updates. IEEE Trans. Comput. 65(10), 3184–3195 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dyer, J., Dyer, M., Xu, J.: Order-preserving encryption using approximate integer common divisors. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 257–274. Springer, Cham (2017). Scholar
  13. 13.
    B. Fuller, et al.: Sok: cryptographically protected database search. In: Proceedings of the IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, pp. 172–191 (2017)Google Scholar
  14. 14.
    Furukawa, J.: Request-based comparable encryption. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 129–146. Springer, Heidelberg (2013). Scholar
  15. 15.
    Gupta, P., McKeown, N.: Algorithms for packet classification. IEEE Netw. 15(2), 24–32 (2001)CrossRefGoogle Scholar
  16. 16.
    Kadhem, H., Amagasa, T., Kitagawa, H.: A secure and efficient order preserving encryption scheme for relational databases. In: Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS), Valencia, Spain, pp. 25–35 (2010)Google Scholar
  17. 17.
    Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), Denver, CO, USA, pp. 656–667 (2015)Google Scholar
  18. 18.
    Lee, S., Park, T., Lee, D., Nam, T., Kim, S.: Chaotic order preserving encryption for efficient and secure queries on databases. IEICE Trans. Inf. Syst. 92(11), 2207–2217 (2009)CrossRefGoogle Scholar
  19. 19.
    Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications, and lower bounds. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), Vienna, Austria, pp. 1167–1178 (2016)Google Scholar
  20. 20.
    Li, J., Chen, X., Xhafa, F., Barolli, L.: Secure deduplication storage systems supporting keyword search. J. Comput. Syst. Sci. 81(8), 1532–1541 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, Y., Lai, J., Wang, C., Zhang, J., Xiong, J.: Verifiable range query processing for cloud computing. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 333–349. Springer, Cham (2017). Scholar
  22. 22.
    Liu, D., Wang, S.: Programmable order-preserving secure index for encrypted database query. In: Proceedings of the IEEE International Conference on Cloud Computing (CLOUD), Honolulu, HI, USA, pp. 502–509 (2012)Google Scholar
  23. 23.
    Liu, D., Wang, S.: Nonlinear order preserving index for encrypted database query in service cloud environments. Concurr. Comput.: Pract. Exp. 25(13), 1967–1984 (2013)CrossRefGoogle Scholar
  24. 24.
    Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving encoding. In: Proceedings of the IEEE Symposium on Security and Privacy (SP), Berkeley, CA, USA, pp. 463–477 (2013)Google Scholar
  25. 25.
    Roche, D.S., Apon, D., Choi, S.G., Yerukhimovich, A.: POPE: partial order preserving encoding. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), Vienna, Austria, pp. 1131–1142 (2016)Google Scholar
  26. 26.
    Wang, J., Chen, X., Huang, X., You, I., Xiang, Y.: Verifiable auditing for outsourced database in cloud computing. IEEE Trans. Comput. 64(11), 3293–3303 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, J., Chen, X., Li, J., Zhao, J., Shen, J.: Towards achieving flexible and verifiable search for outsourced database in cloud computing. Future Gener. Comput. Syst. 67, 266–275 (2017)CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Wang, J., Chen, X.: Secure searchable encryption: a survey. J. Commun. Inf. Netw. 1(4), 52–65 (2016)CrossRefGoogle Scholar
  29. 29.
    Xiao, L., Yen, I.: Security analysis for order preserving encryption schemes. In: Proceedings of the Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, pp. 1–6 (2012)Google Scholar
  30. 30.
    Zhang, X., Jiang, T., Li, K.-C., Castiglione, A., Chen, X.: New publicly verifiable computation for batch matrix multiplication. Inf. Sci. (2017).
  31. 31.
    Zhang, Z., Chen, X., Li, J., Tao, X., Ma, J.: HVDB: a hierarchical verifiable database scheme with scalable updates. J. Ambient Intell. Humaniz. Comput. (2018).
  32. 32.
    Zhang, Z., Chen, X., Ma, J., Shen, J.: SLDS: secure and location-sensitive data sharing scheme for cloud-assisted cyber-physical systems. Future Gener. Comput. Syst. (2018).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jingjing Guo
    • 1
    • 2
  • Jianfeng Wang
    • 1
    • 3
  • Zhiwei Zhang
    • 1
  • Xiaofeng Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Integrated Service Networks (ISN)Xidian UniversityXi’anPeople’s Republic of China
  2. 2.The State Key Laboratory of CryptologyBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations