A New Insight—Proxy Re-encryption Under LWE with Strong Anti-collusion

  • Wei Yin
  • Qiaoyan Wen
  • Wenmin Li
  • Hua ZhangEmail author
  • Zhengping Jin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)


Proxy re-encryption is a special type of public key encryption that allows an intermediate proxy to transform a ciphertext from one public key to another without learning any information about the original message. Therefore, it can be regarded as a consignation of decryption right. In this paper, we put forward two novel definitions of anti-collusion called strong anti-collusion and weak anti-collusion, and propose an improved strong anti-collusion lattice based proxy re-encryption scheme. Moreover, our scheme based on the hardness of standard Learning With Error (LWE) problem is the CPA secure in the standard model, which can be reduced to the worst-case lattice hard problems. In addition, we give a detailed analysis of key privacy and proof of security.



This work is supported by NSFC (Grant No. 61502044).


  1. 1.
    Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model. Manuscript, July 2009Google Scholar
  2. 2.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). Scholar
  3. 3.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). Scholar
  4. 4.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). Scholar
  5. 5.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Singh, K., Rangan, C.P., Banerjee, A.K.: Lattice based identity based proxy re-encryption scheme. J. Internet Serv. Inf. Secur. 3(3/4), 38–51 (2013)Google Scholar
  7. 7.
    Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). Scholar
  8. 8.
    Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007). Scholar
  9. 9.
    Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 1–18. Springer, Cham (2013). Scholar
  10. 10.
    Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007). Scholar
  11. 11.
    Jiang, Z., Zhenfeng, Z., Chen, Y.: PRE: stronger security notions and efficient construction with non-interactive opening. Theor. Comput. Sci. 542, 1–16 (2014)CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 185–194 (2007)Google Scholar
  13. 13.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 197–206 (2008)Google Scholar
  14. 14.
    Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. IACR Cryptology ePrint Archive, p. 351 (2009)Google Scholar
  15. 15.
    Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). Scholar
  16. 16.
    Xagawa, D.K.: Cryptography with lattices (2010)Google Scholar
  17. 17.
    Daniele, M., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. Springer, Boston (2002). Scholar
  18. 18.
    Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)Google Scholar
  19. 19.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cramer, R., Damgård, I.: On the amortized complexity of zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer, Heidelberg (2009). Scholar
  21. 21.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: Proceedings - Annual IEEE Symposium on Foundations of Computer Science, pp. 372–381 (2004)Google Scholar
  22. 22.
    Ateniese Giuseppe, F., Kevin, G.M., Susan, H.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. (TISSEC) 9(1), 1–30 (2006)CrossRefGoogle Scholar
  23. 23.
    Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidelberg (2009). Scholar
  24. 24.
    Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008). Scholar
  25. 25.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wojciech, B.: New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen 296(1), 625–635 (1993)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wojciech, B.: Inequalities for convex bodies and polar reciprocal lattices in \(R^{n}\). Discret. Comput. Geom. 13(1), 217–231 (1995)MathSciNetGoogle Scholar
  30. 30.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). Scholar
  31. 31.
    Weng, J., Deng, R.H., Liu, S., Chen, K.: Chosen-ciphertext secure bidirectional proxy re-encryption schemes without pairings. Inf. Sci. 180(24), 5077–5089 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xagawa, K., Tanaka, K.: Proxy re-encryption based on learning with errors. In: Proceedings of the 2010 Symposium on Cryptography and Information Security, pp. 29–35 (2010)Google Scholar
  33. 33.
    Nunez, D., Agudo, I., Lopez, J.: NTRUReEncrypt: an efficient proxy re-encryption scheme based on NTRU. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 179–189 (2015)Google Scholar
  34. 34.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 13 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Singh, K., Rangan, C.P., Banerjee, A.K.: Cryptanalysis of unidirectional proxy re-encryption scheme. In: Linawati, M.M.S., Neuhold, E.J., Tjoa, A.M., You, I. (eds.) ICT-EurAsia 2014. LNCS, vol. 8407, pp. 564–575. Springer, Heidelberg (2014). Scholar
  36. 36.
    Kim, K.S., Jeong, I.R.: Collusion-resistant unidirectional proxy re-encryption scheme from lattices. J. Commun. Netw. 18(1), 1–7 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Nuñez, D., et al.: Proxy re-encryption: analysis of constructions and its application to secure access delegation. J. Netw. Comput. Appl. 87, 193–209 (2017)CrossRefGoogle Scholar
  38. 38.
    Shao, J.: SCCR: a generic approach to simultaneously achieve CCA security and collusion resistance in proxy re encryption. Secur. Commun. Netw. 4(2), 122–135 (2011)CrossRefGoogle Scholar
  39. 39.
    Zhang, L., Ma, H., Liu, Z., Dong, E.: Security analysis and improvement of a collusion-resistant identity-based proxy re-encryption scheme. In: Barolli, L., Xhafa, F., Yim, K. (eds.) BWCCA 2016. LNDECT, vol. 2, pp. 839–846. Springer, Cham (2017). Scholar
  40. 40.
    Lu, Y., Li, J.: A pairing-free certificate-based proxy re-encryption scheme for secure data sharing in public clouds. Future Gener. Comput. Syst. 62, 140–147 (2016)CrossRefGoogle Scholar
  41. 41.
    Ge, C.: Identity-based conditional proxy re-encryption with fine grain policy. Comput. Stand. Interfaces 52, 1–9 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Wei Yin
    • 1
  • Qiaoyan Wen
    • 1
  • Wenmin Li
    • 1
  • Hua Zhang
    • 1
    Email author
  • Zhengping Jin
    • 1
  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations