Advertisement

Non-adaptive Group-Testing Aggregate MAC Scheme

  • Shoichi Hirose
  • Junji Shikata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

This paper applies non-adaptive group testing to aggregate message authentication code (MAC) and introduces non-adaptive group-testing aggregate MAC. After formalization of its syntax and security requirements, simple and generic construction is presented, which can be applied to any aggregate MAC scheme formalized by Katz and Lindell in 2008. Then, two instantiations of the construction is presented. One is based on the aggregate MAC scheme by Katz and Lindell and uses addition for tag aggregate. The other uses cryptographic hashing for tag aggregate. Provable security of the generic construction and two instantiations are also discussed.

Keywords

Message authentication Aggregate Group testing Provable security 

Notes

Acknowledgements

This research was conducted under a contract of Research and Development for Expansion of Radio Wave Resources funded by the Ministry of Internal Affairs and Communications, Japan.

References

  1. 1.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_1CrossRefGoogle Scholar
  2. 2.
    Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_25CrossRefGoogle Scholar
  3. 3.
    Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series on Applied Mathematics, vol. 12, 2nd edn. World Scientific, Singapore (2000)zbMATHGoogle Scholar
  4. 4.
    Eikemeier, O., et al.: History-free aggregate message authentication codes. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 309–328. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15317-4_20CrossRefGoogle Scholar
  5. 5.
    FIPS PUB 198-1: The keyed-hash message authentication code (HMAC) (2008)Google Scholar
  6. 6.
    Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data forensics. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 206–221. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_15CrossRefGoogle Scholar
  7. 7.
    Hirose, S., Kuwakado, H.: Forward-secure sequential aggregate message authentication revisited. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 87–102. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12475-9_7CrossRefGoogle Scholar
  8. 8.
    Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39887-5_11CrossRefGoogle Scholar
  9. 9.
    Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79263-5_10CrossRefGoogle Scholar
  10. 10.
    Ma, D., Tsudik, G.: Extended abstract: forward-secure sequential aggregate authentication. In: IEEE Symposium on Security and Privacy, pp. 86–91. IEEE Computer Society (2007). Also published as IACR Cryptology ePrint Archive: Report 2007/052, http://eprint.iacr.org/
  11. 11.
    Ma, D., Tsudik, G.: A new approach to secure logging. ACM Trans. Storage 5(1), 2:1–2:21 (2009)CrossRefGoogle Scholar
  12. 12.
    Minematsu, K.: Efficient message authentication codes with combinatorial group testing. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 185–202. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24174-6_10CrossRefGoogle Scholar
  13. 13.
    NIST Special Publication 800-38B: Recommendation for block cipher modes of operation: the CMAC mode for authentication (2005)Google Scholar
  14. 14.
    Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of FukuiFukuiJapan
  2. 2.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan

Personalised recommendations