Advertisement

Achieving Almost-Full Security for Lattice-Based Fully Dynamic Group Signatures with Verifier-Local Revocation

  • Maharage Nisansala Sevwandi Perera
  • Takeshi Koshiba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

This paper presents a lattice-based group signature scheme that provides both member registration and member revocation with verifier-local revocation. Verifier-local revocation (VLR) seems to be the most suitable revocation approach for any group since when a member is revoked VLR requires to update only verifiers. However, presenting a fully dynamic and fully secured lattice-based group signature scheme with verifier-local revocation is a significant challenge. Thus, we suggest a new security notion to prove the security of VLR schemes with member registration. As a result, we present a dynamical-almost-fully secured fully dynamic group signature scheme from lattices with VLR.

Keywords

Lattice-based group signatures Verifier-local revocation Almost-full anonymity Dynamical-almost-full anonymity Member registration 

Notes

Acknowledgments

This work is supported in part by JSPS Grant-in-Aids for Scientific Research (A) JP16H01705 and for Scientific Research (B) JP17H01695.

References

  1. 1.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or Fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_17CrossRefGoogle Scholar
  2. 2.
    Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM (1996)Google Scholar
  3. 3.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_16CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_38CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30574-3_11CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-CCS 2004, pp. 168–177. ACM (2004)Google Scholar
  7. 7.
    Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_7CrossRefGoogle Scholar
  8. 8.
    Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44586-2_15CrossRefGoogle Scholar
  9. 9.
    Brickell, E.: An efficient protocol for anonymously providing assurance of the container of the private key. Submitted to the Trusted Computing Group, April 2003Google Scholar
  10. 10.
    Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-540-46588-1_19CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_5CrossRefGoogle Scholar
  12. 12.
    Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_4CrossRefGoogle Scholar
  13. 13.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  14. 14.
    Chow, S.S.M., Wong, D.S.: Anonymous identification and designated-verifiers signatures from insecure batch verification. In: Lopez, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 203–219. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73408-6_15CrossRefGoogle Scholar
  15. 15.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: ACM 2008, pp. 197–206. ACM (2008)Google Scholar
  16. 16.
    Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_23CrossRefGoogle Scholar
  17. 17.
    Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_23CrossRefGoogle Scholar
  18. 18.
    Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_3CrossRefGoogle Scholar
  19. 19.
    Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_20CrossRefGoogle Scholar
  20. 20.
    Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_13CrossRefGoogle Scholar
  21. 21.
    Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation and backward unlinkability in the standard model. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10433-6_34CrossRefzbMATHGoogle Scholar
  22. 22.
    Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_19CrossRefGoogle Scholar
  23. 23.
    Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_15CrossRefGoogle Scholar
  24. 24.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  25. 25.
    Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Have they become practical? IACR Cryptology ePrint Archive 2005/442 (2005)Google Scholar
  26. 26.
    Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_18CrossRefGoogle Scholar
  27. 27.
    Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016).  https://doi.org/10.1561/0400000074MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Perera, M.N.S., Koshiba, T.: Fully dynamic group signature scheme with member registration and verifier-local revocation. In: ICMC 2018, Mathematics and Computing (to appear)Google Scholar
  29. 29.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM Press (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maharage Nisansala Sevwandi Perera
    • 1
  • Takeshi Koshiba
    • 2
  1. 1.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  2. 2.Faculty of Education and Integrated Arts and SciencesWaseda UniversityTokyoJapan

Personalised recommendations