Efficient Trapdoor Generation from Multiple Hashing in Searchable Symmetric Encryption

  • Takato HiranoEmail author
  • Yutaka Kawai
  • Yoshihiro Koseki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)


Searchable symmetric encryption (SSE) which can search encrypted data using encrypted keywords has been extremely studied. In Asiacrypt’10, Chase and Kamara formalized structured encryption which is a generalization of SSE, and its concrete schemes were proposed. An efficient SSE scheme (hereafter, Chase-Kamara scheme) which has a very simple encrypted index is obtained by simplifying the concrete schemes, and its adaptive security can be proved, easily. In the Chase-Kamara scheme, a search result for a keyword is represented as a bit string in which the i-th bit is 1 when the i-th document contains the keyword, and the encrypted index is built by directly masking the search result with each bit of the output of a pseudo-random function. Therefore, the Chase-Kamara scheme requires pseudo-random functions whose output lengths are longer than the number of documents that users would like to store. As a result, the trapdoor size of the Chase-Kamara scheme depends on the number of stored documents. In this paper, we propose a modified scheme whose trapdoor size does not depend on the number of stored documents. The modified scheme is constructed by using our multiple hashing technique which can transform a trapdoor of short length to that of long length without any secret information. We also show that the modified scheme achieves the same adaptive security as the Chase-Kamara scheme in the random oracle model.


Searchable symmetric encryption Chase-Kamara scheme Trapdoor size Multiple hashing 



The authors would like to thank anonymous reviewers of ISPEC 2018 for their valuable comments.


  1. 1.
    Alderman, J., Martin, K.M., Renwick, S.L.: Multi-level access in searchable symmetric encryption. In: Brenner, M. (ed.) FC 2017. LNCS, vol. 10323, pp. 35–52. Springer, Cham (2017). Scholar
  2. 2.
    Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. In: STOC 2016 (2016)Google Scholar
  3. 3.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). Scholar
  4. 4.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS 1997, pp. 394–403 (1997)Google Scholar
  5. 5.
    Boldyreva, A., Chenette, N.: Efficient fuzzy search on encrypted data. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 613–633. Springer, Heidelberg (2015). Scholar
  6. 6.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). Scholar
  7. 7.
    Bösch, C., Brinkman, R., Hartel, P., Jonker, W.: Conjunctive wildcard search over encrypted data. In: Jonker, W., Petković, M. (eds.) SDM 2011. LNCS, vol. 6933, pp. 114–127. Springer, Heidelberg (2011). Scholar
  8. 8.
    Bost, R.: \(\Sigma o \phi o \varsigma \) - forward secure searchable encryption. In: ACM CCS 2016, pp. 1143–1154 (2016)Google Scholar
  9. 9.
    Cash, D., et al.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS 2014 (2014)Google Scholar
  10. 10.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). Scholar
  11. 11.
    Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368. Springer, Heidelberg (2014). Scholar
  12. 12.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). Scholar
  13. 13.
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010). Scholar
  14. 14.
    Chase, M., Shen, E.: Substring-searchable symmetric encryption. PETS 2015 2015(2), 263–281 (2015)Google Scholar
  15. 15.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: ACM CCS 2006, pp. 79–88 (2006)Google Scholar
  16. 16.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)CrossRefGoogle Scholar
  17. 17.
    Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality. In: ACM SIGMOD 2017, pp. 1053–1067 (2017)Google Scholar
  18. 18.
    Do, H.G., Ng, W.K.: Private boolean query processing on encrypted data. In: Lam, K.-Y., Chi, C.-H., Qing, S. (eds.) ICICS 2016. LNCS, vol. 9977, pp. 321–332. Springer, Cham (2016). Scholar
  19. 19.
    Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for untrusted servers. J. Comput. Secur. 19(3), 367–397 (2011)CrossRefGoogle Scholar
  20. 20.
    Etemad, M., Kupcu, A., Papamanthou, C.: Efficient dynamic searchable encryption with forward privacy. PETS 2018 2018(1), 5–20 (2018)Google Scholar
  21. 21.
    Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham (2015). Scholar
  22. 22.
    Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
  23. 23.
    Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: ACM CCS 2014, pp. 310–320 (2014)Google Scholar
  24. 24.
    Hamlin, A., Shelat, A., Weiss, M., Wichs, D.: Multi-key searchable encryption, revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 95–124. Springer, Cham (2018). Scholar
  25. 25.
    Hayasaka, K., Kawai, Y., Koseki, Y., Hirano, T., Ohta, K., Iwamoto, M.: Probabilistic generation of trapdoors: reducing information leakage of searchable symmetric encryption. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 350–364. Springer, Cham (2016). Scholar
  26. 26.
    Hirano, T., et al.: Simple, secure, and efficient searchable symmetric encryption with multiple encrypted indexes. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS, vol. 9836, pp. 91–110. Springer, Cham (2016). Scholar
  27. 27.
    Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). Scholar
  28. 28.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: ACM CCS 2012, pp. 965–976 (2012)Google Scholar
  29. 29.
    Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013). Scholar
  30. 30.
    Kissel, Z.A., Wang, J.: Generic adaptively secure searchable phrase encryption. PETS 2017 2017(1), 4–20 (2017)Google Scholar
  31. 31.
    Kurosawa, K.: Garbled searchable symmetric encryption. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 234–251. Springer, Heidelberg (2014). Scholar
  32. 32.
    Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg (2012). Scholar
  33. 33.
    Kurosawa, K., Ohtaki, Y.: How to update documents Verifiably in searchable symmetric encryption. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 309–328. Springer, Cham (2013). Scholar
  34. 34.
    Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted data. In: IEEE ICDE 2012, pp. 1156–1167 (2012)Google Scholar
  35. 35.
    Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over encrypted data in cloud computing. In: IEEE INFOCOM 2010 (Mini-Conference), pp. 1–5 (2010)Google Scholar
  36. 36.
    Miyoshi, R., Yamamoto, H., Fujiwara, H., Miyazaki, T.: Practical and secure searchable symmetric encryption with a small index. In: Lipmaa, H., Mitrokotsa, A., Matulevicius, R. (eds.) NordSec 2017. LNCS, vol. 10674, pp. 53–69. Springer, Cham (2017). Scholar
  37. 37.
    Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: ASIACCS 2013, pp. 265–276 (2013)Google Scholar
  38. 38.
    Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via blind storage. In: IEEE S&P 2014, pp. 639–654 (2014)Google Scholar
  39. 39.
    Ogata, W., Koiwa, K., Kanaoka, A., Matsuo, S.: Toward practical searchable symmetric encryption. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 151–167. Springer, Heidelberg (2013). Scholar
  40. 40.
    Ogata, W., Kurosawa, K.: Efficient no-dictionary verifiable searchable symmetric encryption. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 498–516. Springer, Cham (2017). Scholar
  41. 41.
    Shen, Y., Zhang, P.: Ranked searchable symmetric encryption supporting conjunctive queries. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 350–360. Springer, Cham (2017). Scholar
  42. 42.
    Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted data. In: IEEE S&P 2000, pp. 44–55 (2000)Google Scholar
  43. 43.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS 2014 (2014)Google Scholar
  44. 44.
    Taketani, S., Ogata, W.: Improvement of UC secure searchable symmetric encryption scheme. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 135–152. Springer, Cham (2015). Scholar
  45. 45.
    van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010). Scholar
  46. 46.
    Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured similarity search over outsourced cloud data. In: IEEE INFOCOM 2012, pp. 451–459 (2012).
  47. 47.
    Xu, P., Liang, S., Wang, W., Susilo, W., Wu, Q., Jin, H.: Dynamic searchable symmetric encryption with physical deletion and small leakage. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 207–226. Springer, Cham (2017). Scholar
  48. 48.
    Yang, Y.J., Ding, X.H., Deng, R.H., Bao, F.: Multi-user private queries over encrypted databases. Int. J. Appl. Crypt. 1(4), 309–319 (2009)CrossRefGoogle Scholar
  49. 49.
    Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with minimal leakage and efficient updates on commodity hardware. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 241–259. Springer, Cham (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Mitsubishi Electric CorporationKamakuraJapan

Personalised recommendations