Advertisement

Tumor Microenvironment in T-Cell Lymphomas

  • N. Nora Bennani
  • Stephen M. AnsellEmail author
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 176)

Abstract

T-cell lymphomas (TCL) are uncommon non-Hodgkin lymphomas that often have an aggressive clinical course. Patients typically have limited treatment options upon relapse and a dismal prognosis after progression despite newly approved therapies. New therapeutic approaches for these orphan diseases are very much needed and a greater understanding of the role of nonmalignant immune cells in the tumor microenvironment may allow for an improved antitumor immune response. The tumor microenvironment is a key component in tumor evasion and typically results in an ineffective T-cell response to the tumor cells despite a significant inflammatory response. A better understanding of the tumor microenvironment therefore, in an effort to overcome the barriers to an effective immune response, would help in developing novel therapeutic approaches to treat and improve outcomes of these diseases. Immune checkpoint blockade to reinvigorate suppressed T-cell, or modulation of the CD47-SIRPalpha axis to promote macrophage phagocytosis, would be such targets. However, whether modulating the immune response using each pathway alone or whether a combination approach is necessary has yet to be determined.

Keywords

T-cell lymphoma Tumor microenvironment Regulatory T-cells Helper T-cells Immunotherapy Checkpoint blockade CD47-SIRPalpha axis 

Abbreviations

AITL

Angioimmunoblastic T-cell lymphoma

ALCL

Anaplastic Large Cell Lymphoma

APC

Antigen-Presenting Cells

BV

Brentuximab Vedotin

CTCL

Cutaneous T-cell Lymphoma

CTL

Cytotoxic T Lymphocytes

FDA

Food and Drug Administration

Foxp3

Forkhead box P3

GC

Germinal Centers

MDSC

Myeloid-derived Suppressor Cells

MHC

Major Histocompatibility Complex

NHL

Non-Hodgkin lymphomas

NK

Natural Killer

NKTCL

NK/T-cell lymphomas

MMAE

Monomethyl Auristatin E

NOS

Not Otherwise Specified

PTCL

Peripheral T-cell Lymphomas

TAM

Tumor-associated Macrophages

TCL

T-cell lymphomas

TCR

T-cell Receptor

TFH

T Follicular Helper cells

Th

Helper T-cells

TGF-β

Transforming growth factor-β

TME

Tumor microenvironment

Treg

Regulatory T-cells

References

  1. 1.
    Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1(3):220–228.  https://doi.org/10.1038/35105024CrossRefPubMedGoogle Scholar
  2. 2.
    Andersen MH, Schrama D, Thor Straten P, Becker JC (2006) Cytotoxic T cells. J Investig Dermatol 126(1):32–41.  https://doi.org/10.1038/sj.jid.5700001CrossRefGoogle Scholar
  3. 3.
    Ansell SM, Vonderheide RH (2013) Cellular composition of the tumor microenvironment. Am Soc Clin Oncol Educ Book.  https://doi.org/10.1200/EdBook_AM.2013.33.e91CrossRefPubMedGoogle Scholar
  4. 4.
    Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550.  https://doi.org/10.1038/nrc1388CrossRefPubMedGoogle Scholar
  5. 5.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21.  https://doi.org/10.1038/83713CrossRefPubMedGoogle Scholar
  6. 6.
    Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265.  https://doi.org/10.1002/path.1027CrossRefPubMedGoogle Scholar
  7. 7.
    Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122.  https://doi.org/10.1182/blood-2005-01-0428CrossRefPubMedGoogle Scholar
  8. 8.
    Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73.  https://doi.org/10.1038/83784CrossRefPubMedGoogle Scholar
  9. 9.
    Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F, Lamy T, Sonet A, Rousselet MC, Foussard C, Xerri L (2008) High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol 26(3):440–446.  https://doi.org/10.1200/jco.2007.12.8298CrossRefPubMedGoogle Scholar
  10. 10.
    Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, Montserrat E, Campo E, Banham AH (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108(9):2957–2964.  https://doi.org/10.1182/blood-2006-04-018218CrossRefPubMedGoogle Scholar
  11. 11.
    Carreras J, Lopez-Guillermo A, Roncador G, Villamor N, Colomo L, Martinez A, Hamoudi R, Howat WJ, Montserrat E, Campo E (2009) High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol 27(9):1470–1476.  https://doi.org/10.1200/jco.2008.18.0513CrossRefPubMedGoogle Scholar
  12. 12.
    Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G (2000) T-cell recognition of melanoma-associated antigens. J Cell Physiol 182(3):323–331.  https://doi.org/10.1002/(sici)1097-4652(200003)182:3%3c323:aid-jcp2%3e3.0.co;2-%23CrossRefPubMedGoogle Scholar
  13. 13.
    Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H, Fletcher CD, Freeman GJ, Shipp MA, Rodig SJ (2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19(13):3462–3473.  https://doi.org/10.1158/1078-0432.ccr-13-0855CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Querfeld C, Thompson J, Taylor M, Pillai R, Johnson LD, Catalano T, Petrova PS, Uger RA, Irwin M, Sievers EL, Akilov OE (2017) A single direct intratumoral injection of TTI-621 (SIRPαFc) Induces antitumor activity in patients with relapsed/refractory mycosis fungoides and sézary syndrome: preliminary findings employing an immune checkpoint inhibitor blocking the CD47 “Do Not Eat” Signal. In: Proceedings of ASH 2017; Abstract#4076Google Scholar
  15. 15.
    Chung JS, Shiue LH, Duvic M, Pandya A, Cruz PD Jr, Ariizumi K (2011) Sezary syndrome cells overexpress syndecan-4 bearing distinct heparan sulfate moieties that suppress T-cell activation by binding DC-HIL and trapping TGF-beta on the cell surface. Blood 117(12):3382–3390.  https://doi.org/10.1182/blood-2010-08-302034CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291.  https://doi.org/10.1126/science.1232227CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM, Miller TP, LeBlanc M, Greiner TC, Weisenburger DD, Lynch JC, Vose J, Armitage JO, Smeland EB, Kvaloy S, Holte H, Delabie J, Connors JM, Lansdorp PM, Ouyang Q, Lister TA, Davies AJ, Norton AJ, Muller-Hermelink HK, Ott G, Campo E, Montserrat E, Wilson WH, Jaffe ES, Simon R, Yang L, Powell J, Zhao H, Goldschmidt N, Chiorazzi M, Staudt LM (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351(21):2159–2169.  https://doi.org/10.1056/NEJMoa041869CrossRefPubMedGoogle Scholar
  18. 18.
    de Leval L, Rickman DS, Thielen C, Reynies A, Huang YL, Delsol G, Lamant L, Leroy K, Briere J, Molina T, Berger F, Gisselbrecht C, Xerri L, Gaulard P (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109(11):4952–4963.  https://doi.org/10.1182/blood-2006-10-055145CrossRefPubMedGoogle Scholar
  19. 19.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800.  https://doi.org/10.1038/nm730CrossRefPubMedGoogle Scholar
  20. 20.
    Fanale MA, Horwitz S, Forero-Torres A, Bartlett NL, Advani RH, Pro B, Chen RW, Davies A, Illidge TM, Uttarwar M, Huebner D, Ren H, Shustov AR (2017) Five-year survival results: frontline brentuximab vedotin in combination with CHP in patients with CD30-expressing peripheral T-Cell lymphomas. In: Proceedings of ASH 2017 Abstract#2790Google Scholar
  21. 21.
    Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD (2010) The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 115(2):289–295.  https://doi.org/10.1182/blood-2009-07-235598CrossRefPubMedGoogle Scholar
  22. 22.
    Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, Klasa R, Voss N, Connors JM, Gascoyne RD (2005) Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 106(6):2169–2174.  https://doi.org/10.1182/blood-2005-04-1565CrossRefPubMedGoogle Scholar
  23. 23.
    Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 10(8):554–567.  https://doi.org/10.1038/nri2808CrossRefPubMedGoogle Scholar
  24. 24.
    Gaulard P, de Leval L (2014) The microenvironment in T-cell lymphomas: emerging themes. Semin Cancer Biol 24:49–60.  https://doi.org/10.1016/j.semcancer.2013.11.004CrossRefPubMedGoogle Scholar
  25. 25.
    Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL, Ryder LP, Ralfkiaer E (2007) FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 21(12):2512–2518.  https://doi.org/10.1038/sj.leu.2404913CrossRefPubMedGoogle Scholar
  26. 26.
    Gupta M, Stenson M, O’Byrne M, Maurer MJ, Habermann T, Cerhan JR, Weiner GW, Witzig TE (2016) Comprehensive serum cytokine analysis identifies IL-1RA and soluble IL-2Ralpha as predictors of event-free survival in T-cell lymphoma. Ann Oncol 27(1):165–172.  https://doi.org/10.1093/annonc/mdv486CrossRefPubMedGoogle Scholar
  27. 27.
    Huang Y, de Reynies A, de Leval L, Ghazi B, Martin-Garcia N, Travert M, Bosq J, Briere J, Petit B, Thomas E, Coppo P, Marafioti T, Emile JF, Delfau-Larue MH, Schmitt C, Gaulard P (2010) Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 115(6):1226–1237.  https://doi.org/10.1182/blood-2009-05-221275CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99(19):12293–12297.  https://doi.org/10.1073/pnas.192461099CrossRefPubMedGoogle Scholar
  29. 29.
    Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, Maeda T, Nagata Y, Kitanaka A, Mizuno S, Tanaka H, Chiba K, Ito S, Watatani Y, Kakiuchi N, Suzuki H, Yoshizato T, Yoshida K, Sanada M, Itonaga H, Imaizumi Y, Totoki Y, Munakata W, Nakamura H, Hama N, Shide K, Kubuki Y, Hidaka T, Kameda T, Masuda K, Minato N, Kashiwase K, Izutsu K, Takaori-Kondo A, Miyazaki Y, Takahashi S, Shibata T, Kawamoto H, Akatsuka Y, Shimoda K, Takeuchi K, Seya T, Miyano S, Ogawa S (2016) Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534(7607):402–406.  https://doi.org/10.1038/nature18294CrossRefPubMedGoogle Scholar
  30. 30.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704.  https://doi.org/10.1146/annurev.immunol.26.021607.090331CrossRefPubMedGoogle Scholar
  31. 31.
    Khodadoust M, Rook A, Porcu P, Foss F, Moskowitz A, Shustov AR, Shanbhag S, Sokol L, Shine R, Fling SP, Li S, Rahbar Z, Kim J, Yang Y, Yearley J, Chartash EK, Townson SM, Subrahmanyam PB, Maecker H, Alizadeh AA, Dai J, Horwitz SM, Sharon E, Kohrt HE, Cheever MA, Kim YH (2016) Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and sézary syndrome: clinical efficacy in a CITN multicenter phase 2 study. In: Proceedings of Third World Congress of Cutaneous LymphomaGoogle Scholar
  32. 32.
    Kim YH, Bagot M, Pinter-Brown L, Rook AH, Porcu P, Horwitz SM, Whittaker S, Tokura Y, Vermeer M, Zinzani PL, Sokol L, Morris S, Kim E, Ortiz-Romero PL, Eradat H, Scarisbrick J, Tsianakas A, Elmets C, Dalle S, Fisher DC, Halwani AS, Poligone B, Greer JP, Fierro MT, Khot A, Moskowitz AJ, Dwyer K, Moriya J, Humphrey J, Hudgens S, Grebennik DO, Tobinai K, and Duvic M (2017) Anti-CCR4 monoclonal antibody, mogamulizumab, demonstrates significant improvement in PFS compared to vorinostat in patients with previously treated cutaneous T-cell lymphoma (CTCL): results from the phase III MAVORIC study clinically relevant abstract. In: Proceedings of ASH 2017 Abstract#817Google Scholar
  33. 33.
    Lamant L, McCarthy K, d’Amore E, Klapper W, Nakagawa A, Fraga M, Maldyk J, Simonitsch-Klupp I, Oschlies I, Delsol G, Mauguen A, Brugieres L, Le Deley MC (2011) Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol 29(35):4669–4676.  https://doi.org/10.1200/jco.2011.36.5411CrossRefPubMedGoogle Scholar
  34. 34.
    Lee AM, Clear AJ, Calaminici M, Davies AJ, Jordan S, MacDougall F, Matthews J, Norton AJ, Gribben JG, Lister TA, Goff LK (2006) Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J Clin Oncol 24(31):5052–5059.  https://doi.org/10.1200/jco.2006.06.4642CrossRefPubMedGoogle Scholar
  35. 35.
    Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D, Dhodapkar M, Avigan D, Chapuy B, Ligon AH, Freeman GJ, Rodig SJ, Cattry D, Zhu L, Grosso JF, Bradley Garelik MB, Shipp MA, Borrello I, Timmerman J (2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 34(23):2698–2704.  https://doi.org/10.1200/jco.2015.65.9789CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB (2011) Immunosuppressive CD14+ HLA-DR(low)/-monocytes in B-cell non-Hodgkin lymphoma. Blood 117(3):872–881.  https://doi.org/10.1182/blood-2010-05-283820CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A (2004) Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 14(3):155–160.  https://doi.org/10.1016/j.semcancer.2003.10.001CrossRefPubMedGoogle Scholar
  38. 38.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686.  https://doi.org/10.1016/j.it.2004.09.015CrossRefPubMedGoogle Scholar
  39. 39.
    Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, Wang HY, Wysocka M, Cheng M, Ruggeri BA, Wasik MA (2008) Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA 105(52):20852–20857.  https://doi.org/10.1073/pnas.0810958105CrossRefPubMedGoogle Scholar
  40. 40.
    McHeyzer-Williams LJ, Pelletier N, Mark L, Fazilleau N, McHeyzer-Williams MG (2009) Follicular helper T cells as cognate regulators of B cell immunity. Curr Opin Immunol 21(3):266–273.  https://doi.org/10.1016/j.coi.2009.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S (2012) Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother 35(2):107–115.  https://doi.org/10.1097/cji.0b013e318242169fCrossRefGoogle Scholar
  42. 42.
    Murakami N, Riella LV (2014) Co-inhibitory pathways and their importance in immune regulation. Transplantation 98(1):3–14.  https://doi.org/10.1097/tp.0000000000000169CrossRefPubMedGoogle Scholar
  43. 43.
    Nagato T, Ohkuri T, Ohara K, Hirata Y, Kishibe K, Komabayashi Y, Ueda S, Takahara M, Kumai T, Ishibashi K, Kosaka A, Aoki N, Oikawa K, Uno Y, Akiyama N, Sado M, Takei H, Celis E, Harabuchi Y, Kobayashi H (2017) Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol Immunother CII 66(7):877–890.  https://doi.org/10.1007/s00262-017-1987-xCrossRefPubMedGoogle Scholar
  44. 44.
    O’Connor OA, Bhagat G, Ganapathi K, Pedersen MB, D’Amore F, Radeski D, Bates SE (2014) Changing the paradigms of treatment in peripheral T-cell lymphoma: from biology to clinical practice. Clin Cancer Res 20(20):5240–5254.  https://doi.org/10.1158/1078-0432.ccr-14-2020CrossRefPubMedGoogle Scholar
  45. 45.
    Papadi B, Polski JM, Clarkson DR, Liu-Dumlao TO (2012) Atypical angioimmunoblastic T-cell lymphomas masquerading as systemic polyclonal B-immunoblastic proliferation. Virchows Archiv Int J Pathol 461(3):323–331.  https://doi.org/10.1007/s00428-012-1280-5CrossRefGoogle Scholar
  46. 46.
    Piccaluga PP, Agostinelli C, Califano A, Carbone A, Fantoni L, Ferrari S, Gazzola A, Gloghini A, Righi S, Rossi M, Tagliafico E, Zinzani PL, Zupo S, Baccarani M, Pileri SA (2007) Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 67(22):10703–10710.  https://doi.org/10.1158/0008-5472.can-07-1708CrossRefPubMedGoogle Scholar
  47. 47.
    Prince HM, Kim YH, Horwitz SM, Dummer R, Scarisbrick J, Quaglino P, Zinzani PL, Wolter P, Sanches JA, Ortiz-Romero PL, Akilov OE, Geskin L, Trotman J, Taylor K, Dalle S, Weichenthal M, Walewski J, Fisher D, Dreno B, Stadler R, Feldman T, Kuzel TM, Wang Y, Palanca-Wessels MC, Zagadailov E, Trepicchio WL, Zhang W, Lin HM, Liu Y, Huebner D, Little M, Whittaker S, Duvic M (2017) Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet 390(10094):555–566.  https://doi.org/10.1016/s0140-6736(17)31266-7CrossRefGoogle Scholar
  48. 48.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164PubMedGoogle Scholar
  49. 49.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787.  https://doi.org/10.1016/j.cell.2008.05.009CrossRefPubMedGoogle Scholar
  50. 50.
    Sato F, Ishida T, Ito A, Mori F, Masaki A, Takino H, Narita T, Ri M, Kusumoto S, Suzuki S, Komatsu H, Niimi A, Ueda R, Inagaki H, Iida S (2013) Angioimmunoblastic T-cell lymphoma mice model. Leuk Res 37(1):21–27.  https://doi.org/10.1016/j.leukres.2012.09.009CrossRefPubMedGoogle Scholar
  51. 51.
    Schmieder A, Michel J, Schonhaar K, Goerdt S, Schledzewski K (2012) Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 22(4):289–297.  https://doi.org/10.1016/j.semcancer.2012.02.002CrossRefPubMedGoogle Scholar
  52. 52.
    Seder RA, Paul WE (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12:635–673.  https://doi.org/10.1146/annurev.iy.12.040194.003223CrossRefPubMedGoogle Scholar
  53. 53.
    Siegel RL, Miller KD (2017) Jemal A (2017) Cancer Statistics. CA Cancer J Clin 67(1):7–30.  https://doi.org/10.3322/caac.21387CrossRefPubMedGoogle Scholar
  54. 54.
    Stockwin LH, McGonagle D, Martin IG, Blair GE (2000) Dendritic cells: immunological sentinels with a central role in health and disease. Immunol Cell Biol 78(2):91–102.  https://doi.org/10.1046/j.1440-1711.2000.00888.xCrossRefPubMedGoogle Scholar
  55. 55.
    Sweetenham JW, Goldman B, LeBlanc ML, Cook JR, Tubbs RR, Press OW, Maloney DG, Fisher RI, Rimsza LM, Braziel RM, Hsi ED (2010) Prognostic value of regulatory T cells, lymphoma-associated macrophages, and MUM-1 expression in follicular lymphoma treated before and after the introduction of monoclonal antibody therapy: a southwest oncology group study. Ann Oncol 21(6):1196–1202.  https://doi.org/10.1093/annonc/mdp460CrossRefPubMedGoogle Scholar
  56. 56.
    Travert M, Huang Y, de Leval L, Martin-Garcia N, Delfau-Larue MH, Berger F, Bosq J, Briere J, Soulier J, Macintyre E, Marafioti T, de Reynies A, Gaulard P (2012) Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood 119(24):5795–5806.  https://doi.org/10.1182/blood-2011-12-396150CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tsushima F, Yao S, Shin T, Flies A, Flies S, Xu H, Tamada K, Pardoll DM, Chen L (2007) Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood 110(1):180–185.  https://doi.org/10.1182/blood-2006-11-060087CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S (2008) Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 93(2):193–200.  https://doi.org/10.3324/haematol.11702CrossRefPubMedGoogle Scholar
  59. 59.
    Varghese B, Widman A, Do J, Taidi B, Czerwinski DK, Timmerman J, Levy S, Levy R (2009) Generation of CD8+ T cell-mediated immunity against idiotype-negative lymphoma escapees. Blood 114(20):4477–4485.  https://doi.org/10.1182/blood-2009-05-223263CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413CrossRefGoogle Scholar
  61. 61.
    Wilcox RA, Feldman AL, Wada DA, Yang ZZ, Comfere NI, Dong H, Kwon ED, Novak AJ, Markovic SN, Pittelkow MR, Witzig TE, Ansell SM (2009) B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood 114(10):2149–2158.  https://doi.org/10.1182/blood-2009-04-216671CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wilcox RA, Wada DA, Ziesmer SC, Elsawa SF, Comfere NI, Dietz AB, Novak AJ, Witzig TE, Feldman AL, Pittelkow MR, Ansell SM (2009) Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood 114(14):2936–2944.  https://doi.org/10.1182/blood-2009-05-220111CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wu X, Schulte BC, Zhou Y, Haribhai D, Mackinnon AC, Plaza JA, Williams CB, Hwang ST (2014) Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol 134(11):2814–2822.  https://doi.org/10.1038/jid.2014.206CrossRefPubMedGoogle Scholar
  64. 64.
    Yang ZZ, Grote DM, Xiu B, Ziesmer SC, Price-Troska TL, Hodge LS, Yates DM, Novak AJ, Ansell SM (2014) TGF-beta upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia 28(9):1872–1884.  https://doi.org/10.1038/leu.2014.84CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yang ZZ, Grote DM, Ziesmer SC, Manske MK, Witzig TE, Novak AJ, Ansell SM (2011) Soluble IL-2Ralpha facilitates IL-2-mediated immune responses and predicts reduced survival in follicular B-cell non-Hodgkin lymphoma. Blood 118(10):2809–2820.  https://doi.org/10.1182/blood-2011-03-340885CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yang ZZ, Grote DM, Ziesmer SC, Xiu B, Yates NR, Secreto FJ, Hodge LS, Witzig TE, Novak AJ, Ansell SM (2013) Soluble and membrane-bound TGF-beta-mediated regulation of intratumoral T cell differentiation and function in B-cell non-Hodgkin lymphoma. PLoS ONE 8(3):e59456.  https://doi.org/10.1371/journal.pone.0059456CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+ CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107(9):3639–3646.  https://doi.org/10.1182/blood-2005-08-3376CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yao S, Chen L (2006) Reviving exhausted T lymphocytes during chronic virus infection by B7-H1 blockade. Trends in molecular medicine 12(6):244–246.  https://doi.org/10.1016/j.molmed.2006.04.007CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang W, Wang L, Zhou D, Cui Q, Zhao D, Wu Y (2011) Expression of tumor-associated macrophages and vascular endothelial growth factor correlates with poor prognosis of peripheral T-cell lymphoma, not otherwise specified. Leuk Lymphoma 52(1):46–52.  https://doi.org/10.3109/10428194.2010.529204CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Hematology, Department of MedicineMayo ClinicRochesterUSA

Personalised recommendations