• Jasmine ZainEmail author
Part of the Cancer Treatment and Research book series (CTAR, volume 176)


Mature T-cell non-Hodgkin lymphomas (T-cell NHL) are a heterogeneous group of lymphoid malignancies including NK/T-cell lymphomas. Hematopoietic cell transplantation (HCT) is an important component of the management of T-cell NHL; however, the optimal timing and type of transplant for each different subtype is an ongoing debate. For the purpose of this chapter, PTCL will be classified as (1) systemic PTCL that includes nodal as well as non-nodal histologies in PTCL (2) CTCL—or cutaneous T-cell lymphomas that arise primarily in the skin and (3) NK/T-cell lymphomas both nasal and extranasal types. It is difficult to do any large trials in PTCL as they are rare diseases with variable clinical and biological characteristics and most patients are not transplant eligible due to various reasons including poor disease control. There are no randomized trials in transplant for PTCL but there is an experience based on retrospective as well as some well-designed prospective trials that have helped outline the role of HSCT in the treatment paradigm of PTCL. High-dose therapy and autologous HCT is recommended in first complete remission for most systemic (non-cutaneous) nodal subtypes, or peripheral T-cell lymphomas (PTCL). Autologous HCT can provide long-term remission for relapsed PTCL but is ineffective for refractory/chemoresistant disease. Allogeneic stem cell transplantation harnesses the graft-versus-lymphoma effect, providing long-term remission for relapsed PTCL. AlloHCT is also being used successfully to provide long-term disease control for advanced cutaneous T-cell lymphoma (CTCL). The use of transplant in NK/T-cell lymphoma is increasingly being recommended in the relapsed setting only as there are more effective treatments available for the upfront setting in limited stage disease.


Peripheral T-cell lymphoma Cutaneous T-cell lymphoma NK/T-cell lymphoma Autologous hematopoietic cell transplantation Allogeneic hematopoietic cell transplantation Graft-versus-lymphoma 


  1. 1.
    Jaffe ES, Barr PM, Smith SM (2017) Understanding the new WHO classification of lymphoid malignancies: why it’s important and how it will affect practice. Am Soc Clin Oncol Educ Book 37:535–546PubMedCrossRefGoogle Scholar
  2. 2.
    Willemze R et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105(10):3768–3785CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vose J, Armitage J, Weisenburger D (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26(25):4124–4130CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carson KR et al (2017) A prospective cohort study of patients with peripheral T-cell lymphoma in the United States. Cancer 123(7):1174–1183PubMedCrossRefGoogle Scholar
  5. 5.
    Iqbal J et al (2016) Genomic signatures in T-cell lymphoma: how can these improve precision in diagnosis and inform prognosis? Blood Rev 30(2):89–100PubMedCrossRefGoogle Scholar
  6. 6.
    Gallamini A et al (2004) Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood 103(7):2474–2479PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Jillella AP et al (2000) P-glycoprotein expression and multidrug resistance in cutaneous T-cell lymphoma. Cancer Invest 18(7):609–613PubMedCrossRefGoogle Scholar
  8. 8.
    Kwong YL et al (2017) PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 129(17):2437–2442PubMedCrossRefGoogle Scholar
  9. 9.
    Zackheim HS et al (1999) Prognosis in cutaneous T-cell lymphoma by skin stage: long-term survival in 489 patients. J Am Acad Dermatol 40(3):418–425PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas ED et al (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257(11):491–496PubMedCrossRefGoogle Scholar
  11. 11.
    Busch K et al (2015) Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518(7540):542–546PubMedCrossRefGoogle Scholar
  12. 12.
    Brinkman DM et al (2007) Resetting the adaptive immune system after autologous stem cell transplantation: lessons from responses to vaccines. J Clin Immunol 27(6):647–658PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Thomas ED et al (1977) One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood 49(4):511–533PubMedGoogle Scholar
  14. 14.
    Slavin S (2004) Reduced intensity versus truly nonmyeloablative conditioning for stem-cell transplant recipients. Transplantation 78(7):964–965PubMedCrossRefGoogle Scholar
  15. 15.
    Porter DL (2011) Allogeneic immunotherapy to optimize the graft-versus-tumor effect: concepts and controversies. Hematol Am Soc Hematol Educ Program 2011:292–298CrossRefGoogle Scholar
  16. 16.
    Shimoni A et al (2016) Long-term survival and late events after allogeneic stem cell transplantation from HLA-matched siblings for acute myeloid leukemia with myeloablative compared to reduced-intensity conditioning: a report on behalf of the acute leukemia working party of European group for blood and marrow transplantation. J Hematol Oncol 9(1):118PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pedersen MB et al (2017) DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: a Danish cohort study. Blood 130(4):554–557PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sharma M, Pro B (2015) Bone marrow transplantation for peripheral T-cell non-Hodgkins’ lymphoma in first remission. Curr Treat Options Oncol 16(7):34PubMedCrossRefGoogle Scholar
  19. 19.
    Yared J, Kimball A (2013) The role of high dose chemotherapy and autologous stem-cell transplantation in peripheral T-cell lymphoma: a review of the literature and new perspectives. Cancer Treat Rev 39(1):51–59PubMedCrossRefGoogle Scholar
  20. 20.
    Beitinjaneh A et al (2011) Autologous stem cell transplantation (ASCT) as upfront or salvage therapy for noncutaneous T-cell lymphoma (TCL): The University of Texas M. D. Anderson Cancer Center (MDACC) experience. In: ASCO Meeting Abstracts, vol 29, no 15 suppl, p 6565CrossRefGoogle Scholar
  21. 21.
    Nademanee A et al (2011) High-dose therapy and autologous hematopoietic cell transplantation in peripheral T Cell lymphoma (PTCL): analysis of prognostic factors. Biol Blood Marrow Transpl 17(10):1481–1489CrossRefGoogle Scholar
  22. 22.
    Numata A et al (2010) Long-term outcomes of autologous PBSCT for peripheral T-cell lymphoma: retrospective analysis of the experience of the Fukuoka BMT group. Bone Marrow Transpl 45(2):311–316CrossRefGoogle Scholar
  23. 23.
    Kyriakou C et al (2008) High-dose therapy and autologous stem-cell transplantation in angioimmunoblastic lymphoma: complete remission at transplantation is the major determinant of outcome—lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol 26(2):218–224PubMedGoogle Scholar
  24. 24.
    Yang D-H et al (2009) Prognostic factors and clinical outcomes of high-dose chemotherapy followed by autologous stem cell transplantation in patients with peripheral T cell lymphoma, unspecified: complete remission at transplantation and the prognostic index of peripheral T cell lymphoma are the major factors predictive of outcome. Biol Blood Marrow Transpl 15(1):118–125CrossRefGoogle Scholar
  25. 25.
    Smith SD et al (2007) Autologous hematopoietic stem cell transplantation in peripheral T-cell lymphoma using a uniform high-dose regimen. Bone Marrow Transpl 40(3):239–243CrossRefGoogle Scholar
  26. 26.
    d’Amore F et al (2012) Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol 30(25):3093–3099PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mehta N et al (2013) A retrospective analysis of peripheral T-cell lymphoma treated with the intention to transplant in the first remission. Clin Lymphoma Myeloma Leuk 13(6):664–670PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Han X et al (2017) Autologous stem cell transplantation as frontline strategy for peripheral T-cell lymphoma: a single-centre experience. J Int Med Res 45(1):290–302PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fossard G et al (2017) Role of up-front autologous stem cell transplantation in peripheral T-cell lymphoma for patients in response after induction: an analysis of patients from LYSA centers. Ann OncolGoogle Scholar
  30. 30.
    Reimer P et al (2009) Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol 27(1):106–113PubMedCrossRefGoogle Scholar
  31. 31.
    Corradini P et al (2006) Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia 20(9):1533–1538PubMedCrossRefGoogle Scholar
  32. 32.
    Mercadal S et al (2008) Intensive chemotherapy (high-dose CHOP/ESHAP regimen) followed by autologous stem-cell transplantation in previously untreated patients with peripheral T-cell lymphoma. Ann Oncol 19(5):958–963PubMedCrossRefGoogle Scholar
  33. 33.
    Ahn JS et al (2011) Frontline autologous stem cell transplantation as intensive consolidation in patients with peripheral T cell lymphomas: multicenter phase II trial in Korea. In: Proceedings of ASH Annual Meeting Abstracts, vol 118, no 21, p 4477Google Scholar
  34. 34.
    Rodriguez J et al (2007) Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from The Gel-Tamo Study Group. Eur J Haematol 79(1):32–38PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen AD et al (2007) Risk-adapted autologous stem cell transplantation with adjuvant dexamethasone ± thalidomide for systemic light-chain amyloidosis: results of a phase II trial. Br J Haematol 139(2):224–233PubMedCrossRefGoogle Scholar
  36. 36.
    Al-Toma A et al (2007) Disappointing outcome of autologous stem cell transplantation for enteropathy-associated T-cell lymphoma. Dig Liver Dis 39(7):634–641PubMedCrossRefGoogle Scholar
  37. 37.
    Terras S et al (2012) Allogeneic haematopoietic stem cell transplantation in a patient with cutaneous gamma/delta-T-cell lymphoma. Acta Dermato-VenereolGoogle Scholar
  38. 38.
    NCCN guidelines version 3.2018Google Scholar
  39. 39.
    d’Amore F et al (2015) Peripheral T-cell lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(Suppl 5):v108–v115PubMedCrossRefGoogle Scholar
  40. 40.
    Kharfan-Dabaja MA et al (2017) Clinical practice recommendations on indication and timing of hematopoietic cell transplantation in mature T cell and NK/T cell lymphomas: an international collaborative effort on behalf of the guidelines Committee of the American Society for blood and marrow transplantation. Biol Blood Marrow Transplant 23(11):1826–1838PubMedCrossRefGoogle Scholar
  41. 41.
    Zamkoff KW et al (2004) High-dose therapy and autologous stem cell transplant does not result in long-term disease-free survival in patients with recurrent chemotherapy-sensitive ALK-negative anaplastic large-cell lymphoma. Bone Marrow Transpl 33(6):635–638CrossRefGoogle Scholar
  42. 42.
    Jantunen E et al (2004) Autologous stem cell transplantation in adult patients with peripheral T-cell lymphoma: a nation-wide survey. Bone Marrow Transpl 33(4):405–410CrossRefGoogle Scholar
  43. 43.
    Jagasia M et al (2004) Histology impacts the outcome of peripheral T-cell lymphomas after high dose chemotherapy and stem cell transplant. Leuk Lymphoma 45(11):2261–2267PubMedCrossRefGoogle Scholar
  44. 44.
    Kewalramani T et al (2006) Autologous transplantation for relapsed or primary refractory peripheral T-cell lymphoma. Br J Haematol 134(2):202–207PubMedCrossRefGoogle Scholar
  45. 45.
    Kim MK et al (2007) High-dose chemotherapy and autologous stem cell transplantation for peripheral T-cell lymphoma: complete response at transplant predicts survival. Ann Hematol 86(6):435–442PubMedCrossRefGoogle Scholar
  46. 46.
    Pro B et al (2017) Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 130(25):2709–2717PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Moskowitz AJ, Lunning MA, Horwitz SM (2014) How I treat the peripheral T-cell lymphomas. Blood 123(17):2636–2644PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Corradini P et al (2004) Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkin’s lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells. J Clin Oncol 22(11):2172–2176CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Le Gouill S et al (2008) Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol 26(14):2264–2271PubMedCrossRefGoogle Scholar
  50. 50.
    Dodero A et al (2012) Allogeneic transplantation following a reduced-intensity conditioning regimen in relapsed/refractory peripheral T-cell lymphomas: long-term remissions and response to donor lymphocyte infusions support the role of a graft-versus-lymphoma effect. Leukemia 26(3):520–526PubMedCrossRefGoogle Scholar
  51. 51.
    Suzuki R et al (2006) Hematopoietic stem cell transplantation for natural killer-cell lineage neoplasms. Bone Marrow Transpl 37(4):425–431CrossRefGoogle Scholar
  52. 52.
    Kyriakou C et al (2009) Allogeneic stem cell transplantation is able to induce long-term remissions in angioimmunoblastic T-cell lymphoma: a retrospective study from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol 27(24):3951–3958PubMedCrossRefGoogle Scholar
  53. 53.
    Zain J et al (2011) Allogeneic hematopoietic cell transplant for peripheral T-cell non-Hodgkin lymphoma results in long-term disease control. Leuk Lymphoma 52(8):1463–1473PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Shustov AR et al (2010) Allogeneic haematopoietic cell transplantation after nonmyeloablative conditioning in patients with T-cell and natural killer-cell lymphomas. Br J Haematol 150(2):170–178PubMedPubMedCentralGoogle Scholar
  55. 55.
    Delioukina M et al (2012) Reduced-intensity allogeneic hematopoietic cell transplantation using fludarabine-melphalan conditioning for treatment of mature T-cell lymphomas. Bone Marrow Transpl 47:65–72CrossRefGoogle Scholar
  56. 56.
    Hamadani M et al (2008) Allogeneic hematopoietic stem cell transplantation for peripheral T cell lymphomas; evidence of graft-versus-T cell lymphoma effect. Biol Blood Marrow Transpl 14(4):480–483CrossRefGoogle Scholar
  57. 57.
    Goldberg JD et al (2012) Long-term survival in patients with peripheral T-cell non-Hodgkin lymphomas after allogeneic hematopoietic stem cell transplant. Leuk Lymphoma 53(6):1124–1129PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Loirat M et al (2015) Upfront allogeneic stem-cell transplantation for patients with nonlocalized untreated peripheral T-cell lymphoma: an intention-to-treat analysis from a single center. Ann Oncol 26(2):386–392PubMedCrossRefGoogle Scholar
  59. 59.
    Gibson JF et al (2015) Hematopoietic stem cell transplantation for primary cutaneous gammadelta T-cell lymphoma and refractory subcutaneous panniculitis-like T-cell lymphoma. J Am Acad Dermatol 72(6):1010–5 e5Google Scholar
  60. 60.
    Hishizawa M et al (2010) Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood 116(8):1369–1376CrossRefGoogle Scholar
  61. 61.
    Shiratori S et al (2008) A retrospective analysis of allogeneic hematopoietic stem cell transplantation for adult T cell leukemia/lymphoma (ATL): clinical impact of graft-versus-leukemia/lymphoma effect. Biol Blood Marrow Transpl 14(7):817–823CrossRefGoogle Scholar
  62. 62.
    Fuji S et al (2018) Role of up-front allogeneic hematopoietic stem cell transplantation for patients with aggressive adult T-cell leukemia-lymphoma: a decision analysis. Bone Marrow TransplGoogle Scholar
  63. 63.
    Bigler RD et al (1991) Autologous bone marrow transplantation for advanced stage mycosis fungoides. Bone Marrow Transpl 7(2):133–137Google Scholar
  64. 64.
    Ingen-Housz-Oro S et al (2004) High-dose therapy and autologous stem cell transplantation in relapsing cutaneous lymphoma. Bone Marrow Transpl 33(6):629–634CrossRefGoogle Scholar
  65. 65.
    Moreau P et al (1994) Autologous bone marrow transplantation using TBI and CBV for disseminated high/intermediate grade cutaneous non-epidermotropic non-Hodgkin’s lymphoma. Bone Marrow Transpl 14(5):775–778Google Scholar
  66. 66.
    Olavarria E et al (2001) T-cell depletion and autologous stem cell transplantation in the management of tumour stage mycosis fungoides with peripheral blood involvement. Br J Haematol 114(3):624–631PubMedCrossRefGoogle Scholar
  67. 67.
    Russell-Jones R et al (2001) Autologous peripheral blood stem cell transplantation in tumor-stage mycosis fungoides: predictors of disease-free survival. Ann N Y Acad Sci 941:147–154PubMedCrossRefGoogle Scholar
  68. 68.
    Sterling JC et al (1995) Erythrodermic mycosis fungoides treated with total body irradiation and autologous bone marrow transplantation. Clin Exp Dermatol 20(1):73–75PubMedCrossRefGoogle Scholar
  69. 69.
    Ferra C et al (1999) Autologous haematopoietic progenitor transplantation in advanced mycosis fungoides. Br J Dermatol 140(6):1188–1189PubMedGoogle Scholar
  70. 70.
    Duarte RF et al (2008) Haematopoietic stem cell transplantation for patients with primary cutaneous T-cell lymphoma. Bone Marrow Transpl 41(7):597–604CrossRefGoogle Scholar
  71. 71.
    Oyama Y et al (2003) Combined radioguided parathyroidectomy and intravenous vitamin D therapy for the treatment of uraemic hyperparathyroidism. Nephrol Dial Transpl 18(Suppl 3):iii76–78CrossRefGoogle Scholar
  72. 72.
    Duvic M et al (2010) Total skin electron beam and non-myeloablative allogeneic hematopoietic stem-cell transplantation in advanced mycosis fungoides and Sezary syndrome. J Clin Oncol 28(14):2365–2372PubMedCrossRefGoogle Scholar
  73. 73.
    Molina A et al (2005) Durable clinical, cytogenetic, and molecular remissions after allogeneic hematopoietic cell transplantation for refractory Sezary syndrome and mycosis fungoides. J Clin Oncol 23(25):6163–6171PubMedCrossRefGoogle Scholar
  74. 74.
    Molina A et al (1999) Remission of refractory Sezary syndrome after bone marrow transplantation from a matched unrelated donor. Biol Blood Marrow Transpl 5(6):400–404CrossRefGoogle Scholar
  75. 75.
    Guitart J et al (2002) Long-term remission after allogeneic hematopoietic stem cell transplantation for refractory cutaneous T-cell lymphoma. Arch Dermatol 138(10):1359–1365PubMedCrossRefGoogle Scholar
  76. 76.
    Wu PA et al (2009) A meta-analysis of patients receiving allogeneic or autologous hematopoietic stem cell transplant in mycosis fungoides and Sezary syndrome. Biol Blood Marrow Transpl 15(8):982–990CrossRefGoogle Scholar
  77. 77.
    Paralkar VR et al (2011) Allogeneic hematopoietic SCT for primary cutaneous T cell lymphomas. Bone Marrow TransplGoogle Scholar
  78. 78.
    Virmani P et al (2015) Hematopoietic stem cell transplant for mycosis fungoides and Sezary syndrome. Dermatol Clin 33(4):807–818PubMedCrossRefGoogle Scholar
  79. 79.
    Whittaker S, Hoppe R, Prince HM (2016) How I treat mycosis fungoides and Sezary syndrome. Blood 127(25):3142–3153PubMedCrossRefGoogle Scholar
  80. 80.
    Masood N et al (2002) Induction of complete remission of advanced stage mycosis fungoides by allogeneic hematopoietic stem cell transplantation. J Am Acad Dermatol 47(1):140–145PubMedCrossRefGoogle Scholar
  81. 81.
    Soligo D et al (2003) Treatment of advanced mycosis fungoides by allogeneic stem-cell transplantation with a nonmyeloablative regimen. Bone Marrow Transpl 31(8):663–666CrossRefGoogle Scholar
  82. 82.
    Introcaso CE et al (2008) Stem cell transplantation in advanced cutaneous T-cell lymphoma. J Am Acad Dermatol 58(4):645–649PubMedCrossRefGoogle Scholar
  83. 83.
    Kahata K et al (2008) Durable remission of Sezary syndrome after unrelated bone marrow transplantation by reduced-intensity conditioning. Acta Haematol 120(1):14–18PubMedCrossRefGoogle Scholar
  84. 84.
    Cyrenne BM et al (2018) Transplantation in the treatment of primary cutaneous aggressive epidermotropic cytotoxic CD8-positive T-cell lymphoma. Clin Lymphoma Myeloma Leuk 18(1):e85–e93PubMedCrossRefGoogle Scholar
  85. 85.
    Lechowicz MJ et al (2014) Allogeneic hematopoietic cell transplantation for mycosis fungoides and Sezary syndrome. Bone Marrow Transpl 49(11):1360–1365CrossRefGoogle Scholar
  86. 86.
    Duarte RF et al (2014) Long-term outcome of allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sezary syndrome: a European society for blood and marrow transplantation lymphoma working party extended analysis. J Clin Oncol 32(29):3347–3348PubMedCrossRefGoogle Scholar
  87. 87.
    Belinostat is active in peripheral T-cell lymphoma. Cancer Discov 5(8):795Google Scholar
  88. 88.
    Hosing C et al (2015) Allogeneic stem-cell transplantation in patients with cutaneous lymphoma: updated results from a single institution. Ann Oncol 26(12):2490–2495PubMedPubMedCentralGoogle Scholar
  89. 89.
    Nakaike T et al (2013) Reduced-intensity conditioning followed by cord blood transplantation in a patient with refractory folliculotropic mycosis fungoides. Int J Hematol 98(4):491–495PubMedCrossRefGoogle Scholar
  90. 90.
    Fukushima T et al (2008) Successful cord blood transplantation for mycosis fungoides. Int J Hematol 88(5):596–598PubMedCrossRefGoogle Scholar
  91. 91.
    Tsuji H et al (2010) Two cases of mycosis fungoides treated by reduced-intensity cord blood transplantation. J Dermatol 37(12):1040–1045PubMedCrossRefGoogle Scholar
  92. 92.
    Weng et al (2013) Minimal residual disease monitoring with high-throughput sequencing of T cell receptors in cutaneous T cell lymphoma. Sci Transl Med Dec 4; 5(214)PubMedCrossRefGoogle Scholar
  93. 93.
    Benjamin J et al (2014) Total lymphoid irradiation-antithymocyte globulin conditioning and allogeneic transplantation for patients with myelodysplastic syndromes and myeloproliferative neoplasms. Biol Blood Marrow Transpl 20(6):837–843CrossRefGoogle Scholar
  94. 94.
    Schneeweiss M et al (2016) Transformed mycosis fungoides: bridging to allogeneic stem cell transplantation with brentuximab vedotin. Leuk Lymphoma 57(1):206–208PubMedCrossRefGoogle Scholar
  95. 95.
    Au WY et al (2003) Autologous stem cell transplantation for nasal NK/T-cell lymphoma: a progress report on its value. Ann Oncol 14(11):1673–1676PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chan TSY et al (2018) PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol 97(1):193–196PubMedCrossRefGoogle Scholar
  97. 97.
    O’Connor OA et al (2011) Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol 29(9):1182–1189PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Duvic M et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109(1):31–39PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Piekarz RL et al (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27(32):5410–5417PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Younes A et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821PubMedCrossRefGoogle Scholar
  101. 101.
    Duarte RF et al (2010) Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sezary syndrome: a retrospective analysis of the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol 28(29):4492–4499PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.City of Hope National Medical CenterDuarteUSA

Personalised recommendations