Advertisement

Epidemiology and Pathology of T- and NK-Cell Lymphomas

  • Parwiz J. Siaghani
  • Jerry T. Wong
  • John Chan
  • Dennis D. Weisenburger
  • Joo Y. Song
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 176)

Abstract

Purpose: This review will describe and update readers on the recent changes in the 2017 WHO classification regarding peripheral T-cell lymphomas.

Recent findings: Signficant advances in molecular studies have resulted in revisions to the classification as well as introduction to provisional entities such as breast implant-associated ALCL and nodal PTCL with T-follicular helper phenotype.

Summary: Major advances in molecular and gene expression profiling has expanded our knowledge of these rare and aggressive diseases.

Keyword

T-cell lymphoma Classification Molecular 

References

  1. 1.
    Swerdlow SH, Campo E, Harris NL et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues (ed revised 4th), International agency for research on cancer lyonGoogle Scholar
  2. 2.
    Hsi ED, Said J, Macon WR et al (2014) Diagnostic accuracy of a defined immunophenotypic and molecular genetic approach for peripheral T/NK-cell lymphomas. A North American PTCL study group project. Am J Surg Pathol 38(6):768–775PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Iqbal J, Wright G, Wang C et al (2014) Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 123(19):2915–2923PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the world health organization classification of lymphoid neoplasms. Blood 127(20):2375–2390PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Vose J, Armitage J, Weisenburger D (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26(25):4124–4130PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wang SS, Vose JM (2013) Epidemiology and prognosis of T-cell lymphoma. In: Foss F (ed) T-cell lymphomas. Humana Press, Totowa, NJ, pp 25–39CrossRefGoogle Scholar
  7. 7.
    Attygalle AD, Cabecadas J, Gaulard P et al (2014) Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward—report on the lymphoma workshop of the XVIth meeting of the European association for haematopathology and the society for hematopathology. Histopathology 64(2):171–199PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Huang Y, Moreau A, Dupuis J et al (2009) Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol 33(5):682–690PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rodriguez-Pinilla SM, Atienza L, Murillo C et al (2008) Peripheral T-cell lymphoma with follicular T-cell markers. Am J Surg Pathol 32(12):1787–1799PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hu S, Young KH, Konoplev SN, Medeiros LJ (2012) Follicular T-cell lymphoma: a member of an emerging family of follicular helper T-cell derived T-cell lymphomas. Hum Pathol 43(11):1789–1798PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Odejide O, Weigert O, Lane AA et al (2014) A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123(9):1293–1296PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lemonnier F, Couronne L, Parrens M et al (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120(7):1466–1469PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ondrejka SL, Grzywacz B, Bodo J et al (2016) Angioimmunoblastic T-cell Lymphomas With the RHOA p.Gly17Val mutation have classic clinical and pathologic features. Am J Surg Pathol 40(3):335–341PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Jaffe ES, Nicolae A, Pittaluga S (2013) Peripheral T-cell and NK-cell lymphomas in the WHO classification: pearls and pitfalls. Mod Pathol 26(Suppl 1):S71–87PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Attygalle AD, Kyriakou C, Dupuis J et al (2007) Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol 31(7):1077–1088PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rodriguez-Justo M, Attygalle AD, Munson P, Roncador G, Marafioti T, Piris MA (2009) Angioimmunoblastic T-cell lymphoma with hyperplastic germinal centres: a neoplasia with origin in the outer zone of the germinal centre? Clinicopathological and immunohistochemical study of 10 cases with follicular T-cell markers. Mod Pathol 22(6):753–761PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Nicolae A, Pittaluga S, Venkataraman G et al (2013) Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol 37(6):816–826PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zettl A, Lee S, Rudiger T et al (2002) Epstein-Barr virus-associated B-cell lymphoproliferative disorders in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified. Am J Clin Pathol 117(3):368–379PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Federico M, Rudiger T, Bellei M et al (2013) Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J Clin Oncol 31(2):240–246PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Agostinelli C, Hartmann S, Klapper W et al (2011) Peripheral T cell lymphomas with follicular T helper phenotype: a new basket or a distinct entity? Revising Karl Lennert’s personal archive. Histopathology. 59(4):679–691PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Moroch J, Copie-Bergman C, de Leval L et al (2012) Follicular peripheral T-cell lymphoma expands the spectrum of classical Hodgkin lymphoma mimics. Am J Surg Pathol 36(11):1636–1646PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    de Leval L, Rickman DS, Thielen C et al (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109(11):4952–4963PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dobay MP, Lemonnier F, Missiaglia E et al (2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102(4):e148–e151PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A (2006) Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20(2):313–318PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dierks C, Adrian F, Fisch P et al (2010) The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res 70(15):6193–6204PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Attygalle AD, Feldman AL, Dogan A (2013) ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 37(9):1456–1457PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Rizvi MA, Evens AM, Tallman MS, Nelson BP, Rosen ST (2006) T-cell non-Hodgkin lymphoma. Blood 107(4):1255–1264PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Menon MP, Nicolae A, Meeker H et al (2015) Primary CNS T-cell Lymphomas: a clinical, morphologic, immunophenotypic, and molecular analysis. Am J Surg Pathol 39(12):1719–1729PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hayashi E, Takata K, Sato Y et al (2013) Distinct morphologic, phenotypic, and clinical-course characteristics of indolent peripheral T-cell lymphoma. Hum Pathol 44(9):1927–1936PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Bellei M, Sabattini E, Pesce EA et al (2016) Pitfalls and major issues in the histologic diagnosis of peripheral T-cell lymphomas: results of the central review of 573 cases from the T-Cell Project, an international, cooperative study. Hematol OncolGoogle Scholar
  31. 31.
    Swerdlow SH, Jaffe ES, Brousset P et al (2014) Cytotoxic T-cell and NK-cell lymphomas: current questions and controversies. Am J Surg Pathol 38(10):e60–71PubMedCrossRefGoogle Scholar
  32. 32.
    Went P, Agostinelli C, Gallamini A et al (2006) Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J Clin Oncol 24(16):2472–2479PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sabattini E, Pizzi M, Tabanelli V et al (2013) CD30 expression in peripheral T-cell lymphomas. Haematologica 98(8):e81–82PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Barry TS, Jaffe ES, Sorbara L, Raffeld M, Pittaluga S (2003) Peripheral T-cell lymphomas expressing CD30 and CD15. Am J Surg Pathol 27(12):1513–1522PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Geissinger E, Odenwald T, Lee SS et al (2004) Nodal peripheral T-cell lymphomas and in particular, their lymphoepithelioid (Lennert’s) variant are often derived from CD8(+) cytotoxic T-cells. Virchows Arch 445(4):334–343PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hartmann S, Agostinelli C, Klapper W et al (2011) Revising the historical collection of epithelioid cell-rich lymphomas of the Kiel Lymph Node registry: what is Lennert’s lymphoma nowadays? Histopathology 59(6):1173–1182PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ha SY, Sung J, Ju H et al (2013) Epstein-Barr virus-positive nodal peripheral T cell lymphomas: clinicopathologic and gene expression profiling study. Pathol Res Pract 209(7):448–454PubMedCrossRefGoogle Scholar
  38. 38.
    Swerdlow SH (2007) T-cell and NK-cell posttransplantation lymphoproliferative disorders. Am J Clin Pathol 127(6):887–895PubMedCrossRefGoogle Scholar
  39. 39.
    Palomero T, Couronne L, Khiabanian H et al (2014) Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46(2):166–170PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Piccaluga PP, Fuligni F, De Leo A et al (2013) Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol 31(24):3019–3025PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Laginestra MA, Piccaluga PP, Fuligni F et al (2014) Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified. Blood Cancer J 4:259PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Liu C, Iqbal J, Teruya-Feldstein J et al (2013) MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood 122(12):2083–2092PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Piva R, Agnelli L, Pellegrino E et al (2010) Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol 28(9):1583–1590PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wang T, Feldman AL, Wada DA et al (2014) GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood 123(19):3007–3015PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Parrilla Castellar ER, Jaffe ES, Said JW et al (2014) ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124(9):1473–1480PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hapgood G, Savage KJ (2015) The biology and management of systemic anaplastic large cell lymphoma. Blood 126(1):17–25PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Stein H, Foss HD, Durkop H et al (2000) CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96(12):3681–3695PubMedGoogle Scholar
  48. 48.
    Xing X, Feldman AL (2015) Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol. 22(1):29–49PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    King RL, Dao LN, McPhail ED et al (2016) Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am J Surg Pathol 40(1):36–43PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Eberle FC, Song JY, Xi L et al (2012) Nodal involvement by cutaneous CD30-positive T-cell lymphoma mimicking classical Hodgkin lymphoma. Am J Surg Pathol 36(5):716–725PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wang X, Boddicker RL, Dasari S et al (2017) Expression of p63 protein in anaplastic large cell lymphoma: implications for genetic subtyping. Hum Pathol 64:19–27PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Miranda RN, Aladily TN, Prince HM et al (2014) Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol 32(2):114–120PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Brody GS, Deapen D, Taylor CR et al (2015) Anaplastic large cell lymphoma occurring in women with breast implants: analysis of 173 cases. Plast Reconstr Surg 135(3):695–705PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    de Jong D, Vasmel WL, de Boer JP et al (2008) Anaplastic large-cell lymphoma in women with breast implants. JAMA 300(17):2030–2035PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Doren EL, Miranda RN, Selber JC et al (2017) U.S. epidemiology of breast implant-associated anaplastic large cell lymphoma. Plast Reconstr Surg 139(5):1042–1050PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Largent J, Oefelein M, Kaplan HM, Okerson T, Boyle P (2012) Risk of lymphoma in women with breast implants: analysis of clinical studies. Eur J Cancer Prev 21(3):274–280PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Roden AC, Macon WR, Keeney GL, Myers JL, Feldman AL, Dogan A (2008) Seroma-associated primary anaplastic large-cell lymphoma adjacent to breast implants: an indolent T-cell lymphoproliferative disorder. Mod Pathol 21(4):455–463PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Taylor CR, Siddiqi IN, Brody GS (2013) Anaplastic large cell lymphoma occurring in association with breast implants: review of pathologic and immunohistochemical features in 103 cases. Appl Immunohistochem Mol Morphol 21(1):13–20PubMedPubMedCentralGoogle Scholar
  59. 59.
    van Wijk F, Cheroutre H (2009) Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Semin Immunol 21(3):130–138PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Delabie J, Holte H, Vose JM et al (2011) Enteropathy-associated T-cell lymphoma: clinical and histological findings from the international peripheral T-cell lymphoma project. Blood 118(1):148–155PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tan SY, Chuang SS, Tang T et al (2013) Type II EATL (epitheliotropic intestinal T-cell lymphoma): a neoplasm of intra-epithelial T-cells with predominant CD8alphaalpha phenotype. Leukemia 27(8):1688–1696PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wilson AL, Swerdlow SH, Przybylski GK et al (2013) Intestinal gammadelta T-cell lymphomas are most frequently of type II enteropathy-associated T-cell type. Hum Pathol 44(6):1131–1145PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chan JK, Chan AC, Cheuk W et al (2011) Type II enteropathy-associated T-cell lymphoma: a distinct aggressive lymphoma with frequent gammadelta T-cell receptor expression. Am J Surg Pathol 35(10):1557–1569PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kikuma K, Yamada K, Nakamura S et al (2014) Detailed clinicopathological characteristics and possible lymphomagenesis of type II intestinal enteropathy-associated T-cell lymphoma in Japan. Hum Pathol 45(6):1276–1284PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Deleeuw RJ, Zettl A, Klinker E et al (2007) Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology 132(5):1902–1911PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Catassi C, Bearzi I, Holmes GK (2005) Association of celiac disease and intestinal lymphomas and other cancers. Gastroenterology 128(4 Suppl 1):S79–86PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Sharaiha RZ, Lebwohl B, Reimers L, Bhagat G, Green PH, Neugut AI (2012) Increasing incidence of enteropathy-associated T-cell lymphoma in the United States, 1973-2008. Cancer 118(15):3786–3792PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Malamut G, Chandesris O, Verkarre V et al (2013) Enteropathy associated T cell lymphoma in celiac disease: a large retrospective study. Dig Liver Dis 45(5):377–384PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    van de Water JM, Cillessen SA, Visser OJ, Verbeek WH, Meijer CJ, Mulder CJ (2010) Enteropathy associated T-cell lymphoma and its precursor lesions. Best Pract Res Clin Gastroenterol 24(1):43–56Google Scholar
  70. 70.
    Silano M, Volta U, Vincenzi AD, Dessi M, Vincenzi MD (2008) Collaborating centers of the italian registry of the complications of Coeliac D. effect of a gluten-free diet on the risk of enteropathy-associated T-cell lymphoma in celiac disease. Dig Dis Sci 53(4):972–976PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Green PH, Cellier C (2007) Celiac disease. N Engl J Med 357(17):1731–1743PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Megiorni F, Pizzuti A (2012) HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition: practical implications of the HLA molecular typing. J Biomed Sci 19:88PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Malamut G, Afchain P, Verkarre V et al (2009) Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology 136(1):81–90PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Amiot A, Allez M, Treton X et al (2012) High frequency of fatal haemophagocytic lymphohistiocytosis syndrome in enteropathy-associated T cell lymphoma. Dig Liver Dis. 44(4):343–349PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Berman EL, Zauber NP, Rickert RR, Diss TC, Isaacson PG (1998) Enteropathy-associated T cell lymphoma with brain involvement. J Clin Gastroenterol 26(4):337–341PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Gobbi C, Buess M, Probst A et al (2003) Enteropathy-associated T-cell lymphoma with initial manifestation in the CNS. Neurology 60(10):1718–1719PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Malamut G, Meresse B, Cellier C, Cerf-Bensussan N (2012) Refractory celiac disease: from bench to bedside. Semin Immunopathol. 34(4):601–613PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    de Mascarel A, Belleannee G, Stanislas S et al (2008) Mucosal intraepithelial T-lymphocytes in refractory celiac disease: a neoplastic population with a variable CD8 phenotype. Am J Surg Pathol 32(5):744–751PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Farstad IN, Johansen FE, Vlatkovic L et al (2002) Heterogeneity of intraepithelial lymphocytes in refractory sprue: potential implications of CD30 expression. Gut 51(3):372–378PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Tack GJ, van Wanrooij RL, Langerak AW et al (2012) Origin and immunophenotype of aberrant IEL in RCDII patients. Mol Immunol 50(4):262–270PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Schmitz F, Tjon JM, Lai Y et al (2013) Identification of a potential physiological precursor of aberrant cells in refractory coeliac disease type II. Gut 62(4):509–519PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Zettl A, Ott G, Makulik A et al (2002) Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am J Pathol 161(5):1635–1645PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nicolae A, Xi L, Pham TH et al (2016) Mutations in the JAK/STAT and RAS signaling pathways are common in intestinal T-cell lymphomas. Leukemia 30(11):2245–2247PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kucuk C, Jiang B, Hu X et al (2015) Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun 6:6025PubMedCrossRefGoogle Scholar
  85. 85.
    Garcia-Herrera A, Song JY, Chuang SS et al (2011) Nonhepatosplenic gammadelta T-cell lymphomas represent a spectrum of aggressive cytotoxic T-cell lymphomas with a mainly extranodal presentation. Am J Surg Pathol 35(8):1214–1225PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tse E, Gill H, Loong F et al (2012) Type II enteropathy-associated T-cell lymphoma: a multicenter analysis from the Asia lymphoma study group. Am J Hematol 87(7):663–668PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tan SY, Ooi AS, Ang MK et al (2011) Nuclear expression of MATK is a novel marker of type II enteropathy-associated T-cell lymphoma. Leukemia 25(3):555–557PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Chott A, Haedicke W, Mosberger I et al (1998) Most CD56+ intestinal lymphomas are CD8+ CD5-T-cell lymphomas of monomorphic small to medium size histology. Am J Pathol 153(5):1483–1490PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tomita S, Kikuti YY, Carreras J et al (2015) Genomic and immunohistochemical profiles of enteropathy-associated T-cell lymphoma in Japan. Mod Pathol 28(10):1286–1296PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sun J, Lu Z, Yang D, Chen J (2011) Primary intestinal T-cell and NK-cell lymphomas: a clinicopathological and molecular study from China focused on type II enteropathy-associated T-cell lymphoma and primary intestinal NK-cell lymphoma. Mod Pathol 24(7):983–992PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Nairismagi ML, Tan J, Lim JQ et al (2016) JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia 30(6):1311–1319PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Roberti A, Dobay MP, Bisig B et al (2016) Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun. 7:12602PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Perry AM, Warnke RA, Hu Q et al (2013) Indolent T-cell lymphoproliferative disease of the gastrointestinal tract. Blood 122(22):3599–3606PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Matnani R, Ganapathi KA, Lewis SK, Green PH, Alobeid B, Bhagat G (2017) Indolent T- and NK-cell lymphoproliferative disorders of the gastrointestinal tract: a review and update. Hematol Oncol 35(1):3–16PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Margolskee E, Jobanputra V, Lewis SK, Alobeid B, Green PH, Bhagat G (2013) Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features. PLoS ONE 8(7):e68343PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Belhadj K, Reyes F, Farcet JP et al (2003) Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood 102(13):4261–4269PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Falchook GS, Vega F, Dang NH et al (2009) Hepatosplenic gamma-delta T-cell lymphoma: clinicopathological features and treatment. Ann Oncol 20(6):1080–1085PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Vega F, Medeiros LJ, Gaulard P (2007) Hepatosplenic and other gammadelta T-cell lymphomas. Am J Clin Pathol 127(6):869–880PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Macon WR, Levy NB, Kurtin PJ et al (2001) Hepatosplenic alphabeta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gammadelta T-cell lymphomas. Am J Surg Pathol 25(3):285–296PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    McKinney M, Moffitt AB, Gaulard P et al (2017) The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov 7(4):369–379PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yabe M, Medeiros LJ, Tang G et al (2016) Prognostic factors of hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am J Surg Pathol 40(5):676–688PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kong YY, Dai B, Kong JC et al (2008) Subcutaneous panniculitis-like T-cell lymphoma: a clinicopathologic, immunophenotypic, and molecular study of 22 Asian cases according to WHO-EORTC classification. Am J Surg Pathol 32(10):1495–1502PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Willemze R, Jansen PM, Cerroni L et al (2008) Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC cutaneous lymphoma group study of 83 cases. Blood 111(2):838–845PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    LeBlanc RE, Tavallaee M, Kim YH, Kim J (2016) Useful parameters for distinguishing subcutaneous panniculitis-like T-cell lymphoma from lupus erythematosus panniculitis. Am J Surg Pathol 40(6):745–754PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Go RS, Wester SM (2004) Immunophenotypic and molecular features, clinical outcomes, treatments, and prognostic factors associated with subcutaneous panniculitis-like T-cell lymphoma: a systematic analysis of 156 patients reported in the literature. Cancer 101(6):1404–1413PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Janka GE, Lehmberg K (2014) Hemophagocytic syndromes—an update. Blood Rev 28(4):135–142PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Willemze R, Jaffe ES, Burg G et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105(10):3768–3785PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Mehta N, Wayne AS, Kim YH et al (2012) Bexarotene is active against subcutaneous panniculitis-like T-cell lymphoma in adult and pediatric populations. Clin Lymph Myeloma Leuk 12(1):20–25CrossRefGoogle Scholar
  109. 109.
    Jaffe ES, Organization WH (2001) Pathology and genetics of tumours of haematopoietic and lymphoid tissues, IARC PressGoogle Scholar
  110. 110.
    Toro JR, Beaty M, Sorbara L et al (2000) Gamma delta T-cell lymphoma of the skin: a clinical, microscopic, and molecular study. Arch Dermatol 136(8):1024–1032PubMedPubMedCentralGoogle Scholar
  111. 111.
    Toro JR, Liewehr DJ, Pabby N et al (2003) Gamma-delta T-cell phenotype is associated with significantly decreased survival in cutaneous T-cell lymphoma. Blood 101(9):3407–3412PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Swerdlow S, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  113. 113.
    de Wolf-Peeters C, Achten R (2000) gammadelta T-cell lymphomas: a homogeneous entity? Histopathology 36(4):294–305PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Arnulf B, Copie-Bergman C, Delfau-Larue MH et al (1998) Nonhepatosplenic gammadelta T-cell lymphoma: a subset of cytotoxic lymphomas with mucosal or skin localization. Blood 91(5):1723–1731PubMedPubMedCentralGoogle Scholar
  115. 115.
    Emile JF, Boulland ML, Haioun C et al (1996) CD5-CD56+ T-cell receptor silent peripheral T-cell lymphomas are natural killer cell lymphomas. Blood 87(4):1466–1473PubMedPubMedCentralGoogle Scholar
  116. 116.
    Tripodo C, Iannitto E, Florena AM et al (2009) Gamma-delta T-cell lymphomas. Nat Rev Clin Oncol 6(12):707–717PubMedCrossRefGoogle Scholar
  117. 117.
    Guitart J, Weisenburger DD, Subtil A et al (2012) Cutaneous gammadelta T-cell lymphomas: a spectrum of presentations with overlap with other cytotoxic lymphomas. Am J Surg Pathol 36(11):1656–1665PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Amado A, McDonnell JK, Somani N, Bunting ST, Winfield HL (2008) Cutaneous gamma-delta T-cell lymphoma. Leuk Lymph 49(10):2003–2005CrossRefGoogle Scholar
  119. 119.
    Roullet M, Gheith SM, Mauger J, Junkins-Hopkins JM, Choi JK (2009) Percentage of {gamma}{delta} T cells in panniculitis by paraffin immunohistochemical analysis. Am J Clin Pathol 131(6):820–826PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Rubio-Gonzalez B, Zain J, Garcia L, Rosen ST, Querfeld C (2016) Cutaneous gamma-delta T-cell lymphoma successfully treated with brentuximab vedotin. JAMA Dermatol 152(12):1388–1390PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Talpur R, Chockalingam R, Wang C, Tetzlaff MT, Duvic M (2016) A single-center experience with brentuximab vedotin in gamma delta T-cell lymphoma. Clin Lymph Myeloma Leuk 16(2):e15–19CrossRefGoogle Scholar
  122. 122.
    Willemze R (2006) Primary cutaneous B-cell lymphoma: classification and treatment. Curr Opin Oncol 18(5):425–431PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Aschebrook-Kilfoy B, Cocco P, La Vecchia C et al (2014) Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sezary syndrome: the InterLymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr 2014(48):98–105PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cerroni L, Fink-Puches R, Back B, Kerl H (2002) Follicular mucinosis: a critical reappraisal of clinicopathologic features and association with mycosis fungoides and Sezary syndrome. Arch Dermatol 138(2):182–189PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    van Doorn R, Scheffer E, Willemze R (2002) Follicular mycosis fungoides, a distinct disease entity with or without associated follicular mucinosis: a clinicopathologic and follow-up study of 51 patients. Arch Dermatol 138(2):191–198PubMedPubMedCentralGoogle Scholar
  126. 126.
    Arulogun SO, Prince HM, Ng J et al (2008) Long-term outcomes of patients with advanced-stage cutaneous T-cell lymphoma and large cell transformation. Blood 112(8):3082–3087PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Cerroni L, Rieger E, Hodl S, Kerl H (1992) Clinicopathologic and immunologic features associated with transformation of mycosis fungoides to large-cell lymphoma. Am J Surg Pathol 16(6):543–552PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Olsen E, Vonderheid E, Pimpinelli N et al (2007) Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the international society for cutaneous lymphomas (ISCL) and the cutaneous lymphoma task force of the European organization of research and treatment of cancer (EORTC). Blood 110(6):1713–1722PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Cetinozman F, Jansen PM, Vermeer MH, Willemze R (2012) Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol 148(12):1379–1385PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Karube K, Ohshima K, Tsuchiya T et al (2004) Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol 126(1):81–84PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Manoukian G, Hagemeister F (2009) Denileukin diftitox: a novel immunotoxin. Exp Opinion Biol Therapy 9(11):1445–1451CrossRefGoogle Scholar
  132. 132.
    Ohshima K, Suzumiya J, Sato K et al (1999) Survival of patients with HTLV-I-associated lymph node lesions. J Pathol 189(4):539–545PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Katsuya H, Ishitsuka K, Utsunomiya A et al (2015) Treatment and survival among 1594 patients with ATL. Blood 126(24):2570–2577PubMedCrossRefGoogle Scholar
  134. 134.
    Jaffe ES (1995) Nasal and nasal-type T/NK cell lymphoma: a unique form of lymphoma associated with the Epstein-Barr virus. Histopathology 27(6):581–583PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Tsang WY, Chan JK, Ng CS, Pau MY (1996) Utility of a paraffin section-reactive CD56 antibody (123C3) for characterization and diagnosis of lymphomas. Am J Surg Pathol 20(2):202–210PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Quintanilla-Martinez L, Franklin JL, Guerrero I et al (1999) Histological and immunophenotypic profile of nasal NK/T cell lymphomas from Peru: high prevalence of p53 overexpression. Hum Pathol 30(7):849–855PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Chan JK, Tsang WY, Wong KF (1994) Classification of natural killer cell neoplasms. Am J Surg Pathol 18(11):1177–1179PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Pongpruttipan T, Sukpanichnant S, Assanasen T et al (2012) Extranodal NK/T-cell lymphoma, nasal type, includes cases of natural killer cell and alphabeta, gammadelta, and alphabeta/gammadelta T-cell origin: a comprehensive clinicopathologic and phenotypic study. Am J Surg Pathol 36(4):481–499PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Yamaguchi M, Kwong YL, Kim WS et al (2011) Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-cell tumor study group study. J Clin Oncol 29(33):4410–4416PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Parwiz J. Siaghani
    • 1
  • Jerry T. Wong
    • 2
  • John Chan
    • 1
  • Dennis D. Weisenburger
    • 1
  • Joo Y. Song
    • 1
  1. 1.Department of PathologyCity of Hope National Medical CenterDuarteUSA
  2. 2.Department of PathologyRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations