Advertisement

Exercises in Unstyling Texts: Formalisation and Visualisation of a Narrative’s [Space, Time, Actors, Motion] Components

  • Jean-Yves Blaise
  • Iwona DudekEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 914)

Abstract

The research presented in this paper basis on the premise that segmenting textual content into successive situations according to four components - space, time, actors and motion – can help depicting a storyline in a way that facilitates comparative analyses across texts, and ultimately fostering knowledge discovery. The paper presents the original aim of the project and sums up the knowledge modelling choices made in order to formalise the segmentation procedure through which sequences of situations are extracted. We then present several proof of concept visualisations that facilitate visual reasoning on the structure, rhythm, patterns and variations of heterogeneous texts, and summarise how the space, time, actors and motion components are organised inside a given narrative. The approach was tested across various types of text, in three languages, and the paper details some of the potential benefits of the resulting visualisations on the specific case of R. Queneau’s Exercises in style. The paper is concluded with a straight to the point analysis of the approach’s actual weaknesses and limitations.

References

  1. 1.
    ReNom: Navigating the works of Rabelais and Ronsard in search of people and places. http://renom.univ-tours.fr/en/project. Accessed 01 Mar 2017
  2. 2.
    Dudek, I., Blaise, J.Y.: StorylineViz: a [Space, Time, Actors, Motion]—segmentation method for visual text exploration. In: Fred, A., Aveiro, D., Dietz, J., Filipe, J., Bernardino, J., Liu, K. (eds.) Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, KDIR, vol. 1, pp. 21–32. SciTePress (2016).  https://doi.org/10.5220/0006034600210032
  3. 3.
    Marshman, E., Van Bolderen, P.M.: Interlinguistic variation and lexical knowledge patterns. In: Madsen, B.N., Thomsen, H.E. (eds.) Managing Ontologies and Lexical Resources: Internationale Sprogstudier og Vidensteknologi, pp. 263–278. Litera, Copenhagen (2012)Google Scholar
  4. 4.
    Sabol, V.: Visual analysis of relatedness in dynamically changing repositories. In: MOVE-REALthematic School, Fréjus (2016)Google Scholar
  5. 5.
    Blaise, J.Y., Dudek, I.: Analyzing alternative scenarios of evolution in heritage architecture: modelling and visualization challenges. J. Multimed. Process. Technol. 3(1), 29–48 (2012)Google Scholar
  6. 6.
    Blaise, J.Y., Dudek, I.: Spotting temporal co-occurrence patterns: the historySkyline visual metaphor. In: Proceedings of the 1st International Conference on Metrology for Archaeology, Benevento, pp. 378–383 (2015). ISBN: 978-88-940453-3-8Google Scholar
  7. 7.
    Matthew Paris Itinerary to the Holy Land (ca. 1250 A.D.). http://cartographic-images.net/Cartographic_Images/225.1_Palestine.html. Accessed 01 Mar 2017
  8. 8.
    Rosenberg, D., Grafton, A.: Cartographies of Time: A History of the Timeline. Architectural Press, Princeton (2012)Google Scholar
  9. 9.
    Yabuuchi, A.: Home to school diagram. In: Informational Diagram Collection, p. 215. Pie Books, Tokyo (2009)Google Scholar
  10. 10.
    Oelke, D.: Visual document analysis: towards a semantic analysis of large document collections. Ph.D. dissertation, University of Konstanz (2010)Google Scholar
  11. 11.
    Marazzato, R., Sparavigna, A.C.: Extracting Networks of Characters and Places from Written Works with CHAPLIN. CoRR - Computing Research Repository (2014). https://arxiv.org/abs/1402.4259
  12. 12.
    Bilenko, N.Y., Miyakawa, A.: Visualization of narrative structure analysis of sentiments and character interaction in fiction (2013). http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/images/7/7b/AMNBpaper.pdf
  13. 13.
    Marshman, E., L’Homme, M.C., Surtees, V.: Verbal markers of cause-effect relations across corpora. In: Madsen, B.N., Thomsen, H.E. (eds.) Managing Ontologies and Lexical Resources: Internationale Sprogstudier og Vidensteknologi, pp. 159–174. Litera, Copenhagen (2008)Google Scholar
  14. 14.
    Spence, R.: Information Visualization. Pearson Addison-Wesley ACM Press, Harlow (2001)Google Scholar
  15. 15.
    Thomas, J.J., Cook, K.A.: Illuminating the path: the research and development agenda for visual analytics. IEEE Comput. Graph. Appl. 26(1), 10–13 (2006)CrossRefGoogle Scholar
  16. 16.
    Oelke, D., Spretke, D., Stoffel, A., Keim, D.: Visual readability analysis: how to make your writings easier to read. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 123–130, VAST (2010)Google Scholar
  17. 17.
    Koch, S., John, M., Wörner, M., Müller, A., Ertl, T.: VarifocalReader—in-depth visual analysis of large text documents. IEEE Trans. Vis. Comput. Graph. 2(12), 1723–1732 (2014)CrossRefGoogle Scholar
  18. 18.
    Vuillemot, R., Clement, T., Plaisant, C., Kumar, A.: What’s being said near ‘Martha’? Exploring name entities in literary text collections. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 107–114. VAST (2009)Google Scholar
  19. 19.
    Wanner, F., Fuchs, J., Oelke, D., Keim, D.A.: Are my children old enough to read these books? Age suitability analysis. Polibits: Res. J. Comput. Sci. Comput. Eng. Appl. 43, 93–100 (2011)CrossRefGoogle Scholar
  20. 20.
    Kergosien, E., Laval, B., Roche, M., Teisseire, M.: Are opinions expressed in land-use planning documents? Int. J. Geogr. Inf. Sci. 28(4), 739–762 (2014)CrossRefGoogle Scholar
  21. 21.
    Blaise, J.Y., Dudek, I.: Using abstraction levels in the visual exploitation of a knowledge acquisition process. In: Proceedings of I-Know 2005, Graz, pp. 543–552 (2005)Google Scholar
  22. 22.
    Blaise, J.Y., Dudek, I.: Profiling artefact changes: a methodological proposal for the classification and visualisation of architectural transformations. In: Digital Heritage, Proceedings of VSMM 2008—Virtual Systems and Multimedia, pp. 349–356. Archeolingua, Budapest (2008)Google Scholar
  23. 23.
    Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-Oriented Data. Human-Computer Interaction Series. Springer, London (2011).  https://doi.org/10.1007/978-0-85729-079-3CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Korzybski, A.: The role of language in the perceptual processes. In: Blake, R., Ramsey, G. (eds.) Perception: An Approach To Personality, pp. 170–205. The Ronald Press Company, New York (1951)CrossRefGoogle Scholar
  26. 26.
    Tufte, E.R.: Envisioning Information. Graphics Press, Cheshire (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.UMR CNRS/MCC 3495 MAPMarseilleFrance

Personalised recommendations