Congestion Control Supported Dual-Mode Video Transfer

  • Juha VihervaaraEmail author
  • Teemu Alapaholuoma
  • Tarmo Lipping
  • Pekka Loula
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 914)


Transfer of videos over the Internet has increased considerably during the past decade and recent studies indicate that video services represent over half of the Internet traffic, with a growing trend. For the user-friendly operation of the Internet, it is important to distribute these videos in a proper and efficient way. However, no congestion control mechanism suitable and widely used for all kinds of video services is available. We have developed a congestion control mechanism, which is particularly suitable for long-living video traffic. The advantage of the proposed mechanism is its dual-priority nature. There is a mode for low priority traffic where the bandwidth is given away to other connections after the load level of a network exceeds a certain level. On the other hand, the real-time mode of the mechanism acquires its fair share of the network capacity. The real network tests of this study verify the proper operation of our congestion control mechanism.


Congestion control Video transfer 


  1. 1.
    Cisco: Cisco Visual Networking Index: Forecast and Methodology, 2015–2020 (2016). Accessed 02 Feb 2016
  2. 2.
    Donkor, F.: The comparative instructional effectiveness of print-based instructional and video-based materials for teaching practical skills at a distance. Int. Rev. Res. Open Distance Learn. 11(1), 96–115 (2010)CrossRefGoogle Scholar
  3. 3.
    Pandey, A., Patni, N., Singh, M., Sood, A., Singhd, G.: YouTube as a source of information on the H1N1 influenza pandemic. Am. J. Prev. Med. 38(3), 1–3 (2010)CrossRefGoogle Scholar
  4. 4.
    Bianzino, M., Chaudet, C., Rossi, D., Rougier, J.: A survey of green networking research. IEEE Commun. Surv. Tutor. 14(1), 3–20 (2013)CrossRefGoogle Scholar
  5. 5.
    Vihervaara, J., Loula, P.: Dual-mode congestion control mechanism for video service. In: 7th International Conference on Information and Multimedia Technology, ICIMT 2015, pp. 50–56 (2015)CrossRefGoogle Scholar
  6. 6.
    Vihervaara, J., Alapaholuoma, T., Loula, P.: Dual-priority congestion control mechanism for video services, real network tests of CVIHIS. In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol. 3, pp. 51–59. KMIS (2016)Google Scholar
  7. 7.
    Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Trans. Netw. 7(4), 458–472 (1999)CrossRefGoogle Scholar
  8. 8.
    Singh, K., Yadav, R., Manjul, M., Dhir, R.: Bandwidth delay quality parameter based multicast congestion control. In: 16th International Conference on Advanced Computing and Communications, IEEE ADCOM 2008, pp. 399–405 (2008)Google Scholar
  9. 9.
    Kurose, J., Ross, K.: Computer Networking: A Top-Down Approach, 6th edn. Pearson International Edition, London (2012)Google Scholar
  10. 10.
    Lakshmi, G., Bindu, C.: A queuing model for congestion control and reliable data transfer in cable access networks. Int. J. Comput. Sci. Inf. Technol. 2(4), 1427–1433 (2011)CrossRefGoogle Scholar
  11. 11.
    Braden, R., et al.: Recommendations on queue management and congestion avoidance in the Internet. In: IETF RFC 2309, Informational (1998)Google Scholar
  12. 12.
    Shalunov, S., Hazel, G., Iyengar, J., Kuehlewind, M.: Low Extra Delay Background Transport (LEDBAT). IETF RFC6817 (2012). Accessed 06 June 2016
  13. 13.
    Kuzmanovic, A., Knightly, E.: TCP-LP: low-priority service via end-point congestion control. IEEE/ACM Trans. Netw. 14, 739–752 (2006)CrossRefGoogle Scholar
  14. 14.
    Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol (DCCP). IETF RFC4340 (2006).
  15. 15.
    Floyd, S., Handley, M., Padhye, J., Widmer, J.: TCP Friendly Rate Control (TFRC): protocol specification. IETF RFC5348 (2008). Accessed 06 June 2016
  16. 16.
    Holmer, S., Lundin, H., Carlucci, G., De Cicco, L., Mascolo, S.: A Google congestion control algorithm for real-time communication on the World Wide Web. IETF Informational Internet Draft (2015). Accessed 02 Feb 2017
  17. 17.
    Widmer, H., Denda, R., Mauve, M.: A survey on TCP-friendly congestion control. IEEE Netw. 15(3), 28–37 (2001)CrossRefGoogle Scholar
  18. 18.
    Braden, R.: Requirements for Internet Hosts—Communication Layers. IETF RFC 1122 (1989)Google Scholar
  19. 19.
    Akan, Ö.: On the throughput analysis of rate-based and window-based congestion control schemes. Comput. Netw. 44, 701–711 (2004)CrossRefGoogle Scholar
  20. 20.
    Ros, D., Welzl, M.: Less-than-best-effort service: a survey of end-to-end approaches. IEEE Commun. Surv. Tutor. 15(2), 898–908 (2013)CrossRefGoogle Scholar
  21. 21.
    Almes, G., Kalidindi, S., Zekauskas, M.: A One-way Delay Metric for IPPM. IETF RFC 2679 (1999)Google Scholar
  22. 22.
    Meddeb, A.: Internet QoS: pieces of the puzzle. IEEE Commun. Mag. 48(2), 86–94 (2010)CrossRefGoogle Scholar
  23. 23.
    tc: tc(8)—Linux manual page (2016). Accessed 06 June 2016
  24. 24.
    Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42, 64–74 (2008)CrossRefGoogle Scholar
  25. 25.
    La, R., Walrand, J., Anantharam, V.: Issues in TCP Vegas (1999). Accessed 02 Mar 2017
  26. 26.
    Rodríguez-Pérez, M., Herrería-Alonso, S., Fernández-Veiga, M., López-García, C.: Common problems in delay-based congestion control algorithms: a gallery of solutions. Eur. Trans. Telecommun. 22(4), 168–178 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juha Vihervaara
    • 1
    Email author
  • Teemu Alapaholuoma
    • 1
  • Tarmo Lipping
    • 1
  • Pekka Loula
    • 1
  1. 1.Pori CampusTampere University of TechnologyPoriFinland

Personalised recommendations