Advertisement

Fashion Meets AI Technology

  • Xingxing Zou
  • Wai Keung Wong
  • Dongmei Mo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 849)

Abstract

With the development of Artificial Intelligence (AI) technology, extensive research efforts have been devoted to the cross-disciplinary area of fashion and AI. This paper reviews previous research studies of AI on fashion aspect. Fundamental image processing technologies will be introduced first and followed by apparel recognition, and fashion aesthetic understanding. We finally propose a framework about the research direction of AI research on fashion as a reference for inspiring fashion and AI-related researchers.

Keywords

Fashion AI Aesthetic understanding 

Notes

Acknowledgements

This paper was sponsored by the Hong Kong Polytechnic University.

References

  1. 1.
    Liu, S., Song, Z., Liu, G., Xu, C.: Street-to-shop: cross-scenario clothing retrieval via parts alignment and auxiliary set. In: Proc. CVPR (2012)Google Scholar
  2. 2.
    Reid, T.: Essays on the Intellectual Powers of Man. The M.I.T. Press, Cambridge, MA (1969)Google Scholar
  3. 3.
    James, S.: The Concept of the Aesthetic, Stanford Encyclopedia of PhilosophyGoogle Scholar
  4. 4.
    Chen, H., Xu, Z.: Composite templates for cloth modeling and sketching. In: CVPR (2006)Google Scholar
  5. 5.
    Yang, M., Yu, K.: Real-time clothing recognition in surveillance videos. ICIP, 2937–2940 (2011)Google Scholar
  6. 6.
    Liu, S., Liang, X., Liu, L.: Fashion parsing with video context. IEEE Trans. Multimedia 17(8), 1347–1358 (2015)CrossRefGoogle Scholar
  7. 7.
    Wang, N., Ai, H.: Who blocks who: simultaneous clothing segmentation for grouping images. In: ICCV (2011)Google Scholar
  8. 8.
    Yamaguchi, K., Kiapour, M.H., Ortiz, L.E.: Parsing clothing in fashion photographs. In: CVPR (2012)Google Scholar
  9. 9.
    Yamaguchi, K., Kiapour, M.H., Berg, T.: Paper doll parsing: retrieving similar styles to parse clothing items. ICCV (2013)Google Scholar
  10. 10.
    Dong, J., Chen, Q., Xia, W.: A deformable mixture parsing model with parselets. In: ICCV, 3408–3415 (2013)Google Scholar
  11. 11.
    Yang, W., Luo, P., Lin, L.: Clothing co-parsing by joint image segmentation and labeling. In: CVPR, 3182–3189 (2014)Google Scholar
  12. 12.
    Liu, S., Feng, J., Domokos, C.: Fashion parsing with weak color-category labels. IEEE Trans. Multimedia 16(1), 253–265 (2014)CrossRefGoogle Scholar
  13. 13.
    Simo-Serra, E., Fidler, S., Moreno-Noguer, F.: A high performance CRF model for clothes parsing. In: ACCV, 64–81 (2014)Google Scholar
  14. 14.
    Yamaguchi, K., Kiapour, M.: Retrieving similar styles to parse clothing. IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 1028–1040 (2015)CrossRefGoogle Scholar
  15. 15.
    Tangseng, P., Wu, Z., Yamaguchi, K.: Looking at outfit to parse clothing, arXiv preprint arxiv:1703.01386 (2017)Google Scholar
  16. 16.
    Neuberger, A., Alshan, E., Levi, G.: Learning fashion traits with label uncertainty. In: KDDW on ML meets fashion (2017)Google Scholar
  17. 17.
    Li, X., Yao, H., Sun, X.: Sparse representation based visual element analysis. In: ICIP, 657–660 (2011)Google Scholar
  18. 18.
    Wang, X., Zhang, T.: Clothes search in consumer photos via color matching and attribute learning. In: ACM, 1353–1356 (2011)Google Scholar
  19. 19.
    Fu, J., Wang, J., Li, Z.: Efficient clothing retrieval with semantic-preserving visual phrases. In: ACCV, 420–431 (2012)Google Scholar
  20. 20.
    Chen, Q., Li, J., Lu, G.: Clothing retrieval based on image bundled features. In: CCIS 2, 980–984 (2012)Google Scholar
  21. 21.
    Chen, H., Gallagher, A., Girod, B.: Describing clothing by semantic attributes. In: ECCV, 609–623 (2012)Google Scholar
  22. 22.
    Huang, C., Chen, S., Cheng, M.: A sparse-coding based approach to clothing image retrieval. In: ISPACS, 314–318 (2012)Google Scholar
  23. 23.
    Bossard, L., Dantone, M., Leistner, C.: Apparel classification with style. In: ACCV, 321–335 (2012)Google Scholar
  24. 24.
    Wei, D., Catherine W.: Style finder: fine-grained clothing style detection and retrieval. In: CVPRW, (2013)Google Scholar
  25. 25.
    Wang, X., Zhang, T., Tretter, D.: Personal clothing retrieval on photo collections by color and attributes. IEEE Trans. Multimedia 15(8), 2035–2045 (2013)CrossRefGoogle Scholar
  26. 26.
    Kalantidis, Y., Kennedy, L., Li, J.: Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In: ICMR, 105–112 (2013)Google Scholar
  27. 27.
    Kiapour M., Han, X., Lazebnik, S.: Where to buy it: matching street clothing photos in online shops. In: ICCV, 3343–3351 (2015)Google Scholar
  28. 28.
    Huang, J., Feris, R., Chen, Q.: Cross-domain image retrieval with a dual attribute-aware ranking network. In: ICCV (2015)Google Scholar
  29. 29.
    Mizuochi, M., Kanezaki, A., Harada, T.: Clothing retrieval based on local similarity with multiple images. In: ACM, 1165–1168 (2014)Google Scholar
  30. 30.
    Chen, Q., Huang, J., Feris, R.: Deep domain adaptation for describing people based on fine-grained clothing attributes. In: CVPR, 5315–5324 (2015)Google Scholar
  31. 31.
    Lin, K., Yang, H., Liu, K.: Rapid clothing retrieval via deep learning of binary codes and hierarchical search. In: ACM, 499–502 (2015)Google Scholar
  32. 32.
    Veit, A., Kovacs, B., Bell, S.: Learning visual clothing style with heterogeneous dyadic co-occurrences. In: ICCV, 4642–4650 (2015)Google Scholar
  33. 33.
    Yamaguchi, K., Okatani, T., Sudo, K.: Mix and match: joint model for clothing and attribute recognition. In: BMVC, 1(2) (2015)Google Scholar
  34. 34.
    Sun, G., Wu, X., Peng, Q.: Part-based clothing image annotation by visual neighbor retrieval. Neurocomputing 213, 115–124 (2016)CrossRefGoogle Scholar
  35. 35.
    Simo-Serra, E., Ishikawa, H.: Fashion style in 128 floats: joint ranking and classification using weak data for feature extraction. In: CVPR, 298–307 (2016)Google Scholar
  36. 36.
    Vittayakorn, S., Umeda, T., Murasaki, K.: Automatic attribute discovery with neural activations. In: ECCV, 252–268 (2016)Google Scholar
  37. 37.
    Liu, Z., Yan, S., Luo, P.: Fashion landmark detection in the wild. In: ECCV, 229–245 (2016)Google Scholar
  38. 38.
    Liu, Z., Luo, P., Qiu, S.: Deepfashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR (2016)Google Scholar
  39. 39.
    Sengupta, B., Vasquez, E., Qian, Y.: Deep tensor encoding, arXiv preprint arxiv:1703.06324 (2017)Google Scholar
  40. 40.
    Chen, K., Luo, J.: When fashion meets big data: discriminative mining of best selling clothing features. In: WWWC, 15–22 (2017)Google Scholar
  41. 41.
    Laenen, K., Zoghbi, S., Moens, M.: Cross-modal search for fashion attributes. In: KDDW on ML meets fashion (2017)Google Scholar
  42. 42.
    Iwata, T., Wanatabe, S., Sawada, H.: Fashion coordinates recommender system using photographs from fashion magazines. In: IJCAI, 2262–2267 (2011)Google Scholar
  43. 43.
    Liu, S., Fen, J., Song, Z., Zhang, T., Lu, H.: Tell me what to wear! In: ACMMM (2012)Google Scholar
  44. 44.
    Liu, S., Liu, L., Yan, S.: Magic mirror: an intelligent fashion recommendation system. In ACPR 11–15 (2013)Google Scholar
  45. 45.
    Yamaguchi, K., Berg, T., Ortiz, L.: Chic or social: visual popularity analysis in online fashion networks. In: ACM, 773–776 (2014)Google Scholar
  46. 46.
    Jagadeesh, V., Piramuthu, R., Bhardwaj, A.: Large scale visual recommendations from street fashion images. In: ACM, 1925–1934 (2014)Google Scholar
  47. 47.
    Vittayakorn, S., Yamaguchi, K., Berg, A.: Runway to realway: visual analysis of fashion. In: WACV (2015)Google Scholar
  48. 48.
    Kiapour, M., Yamaguchi, K., Berg, A.: Hipster wars: discovering elements of fashion styles. In ECCV (2014)Google Scholar
  49. 49.
    Simo-Serra, E., Fidler, S., Moreno-Noguer, F., Urtasun, R.: Neuroaesthetics in fashion: modeling the perception of beauty. In: CVPR (2015)Google Scholar
  50. 50.
    Vaccaro, K., Shivakumar, S., Ding, Z.: The elements of fashion style. In: ASUIST (2016)Google Scholar
  51. 51.
    Al-Halah, Z., Stiefelhagen, R., Grauman, K.: Fashion forward: forecasting visual style in fashion. In: ICCV (2017)Google Scholar
  52. 52.
    Kang, W.C., Fang, C., Wang, Z.: Visually-aware fashion recommendation and design with generative image models, arXiv preprint arxiv:1711.02231 (2017)Google Scholar
  53. 53.
    Qian, Y., Giaccone, P., Sasdelli, M., et al.: Algorithmic clothing: hybrid recommendation, from street-style-to-shop, arXiv preprint arxiv:1705.09451 (2017)Google Scholar
  54. 54.
    Lin, Y., Wang, T.: Dress up like a stylist? learning from a user-generated fashion network[C]. In: KDDW on ML meets fashion (2017)Google Scholar
  55. 55.
    Han, X., Wu, Z., Jiang, Y.: Learning fashion compatibility with bidirectional lstms. In: ACM, 1078–1086 (2017)Google Scholar
  56. 56.
    He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In WWW, 507–517 (2016)Google Scholar
  57. 57.
    Garg, V., Banerjee, R.H., Anoop, K.R.: Sales potential: modelling shellability of visual aesthetics of fashion product. In: KDDW on ML meets fashion (2017)Google Scholar
  58. 58.
    Lee, D., Han, J., Chambourova, D.: Identifying fashion accounts in social networks. In: KDDW on ML meets fashion (2017)Google Scholar
  59. 59.
    Arora, S., Madvariya, A., Alok, D.: Deciphering fashion sensibility using community detection. In: KDDW on ML meets fashion (2017)Google Scholar
  60. 60.
    Mohammed Abdulla, G., Borar, S..: Size recommendation system for fashion e-commerce. In: KDDW on ML meets fashion (2017)Google Scholar
  61. 61.
    Lorbert, A., Ben-Zvi, N., Ciptadi, A.: Toward better reconstruction of style images with GANs. In: KDDW on ML meets fashion (2017)Google Scholar
  62. 62.
    Date, P.: Fashioning with networks: neural style transfer to design clothes. CoRR abs/1707.09899 (2017)Google Scholar
  63. 63.
    Zhu, S., Fidler, S., Urtasun, R.: Be your own prada: fashion synthesis with structural coherence, arXiv preprint arxiv:1710.07346 (2017)Google Scholar
  64. 64.
    Loni, B., Menendez, M., Georgescu, M.: Fashion-focused creative commons social dataset. In: ACM, 72–77 (2013)Google Scholar
  65. 65.
    Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, arXiv preprint arxiv:1708.07747 (2017)Google Scholar
  66. 66.
    Yu, Q., Liu, F., Song, Y.: Sketch me that shoe. In: CVPR, 799–807 (2016)Google Scholar
  67. 67.
    Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In CVPR (2014)Google Scholar
  68. 68.
    Yu, A., Grauman, K.: Semantic jitter: dense supervision for visual comparisons via synthetic images. In: ICCV (2017)Google Scholar
  69. 69.
    Loni, B., Cheung, L.: Fashion 10000: an enriched social image dataset for fashion and clothing. In: ACM, 41–46 (2014)Google Scholar
  70. 70.
    Shao, M., Li, L., Fu, Y.: What do you do? occupation recognition in a photo via social context. In: ICCV, 3631–3638 (2013)Google Scholar
  71. 71.
    Gaur, A., Mikolajczyk, K.: ranking images based on aesthetic qualities. In: Proceedings of the International Conference on Pattern Recognition (ICPR) (2014)Google Scholar
  72. 72.
    Gaur, A., Mikolajczyk, K.: Aesthetics based assessment and ranking of fashion images. In: CVIU (2014)Google Scholar
  73. 73.
    Matzen, K., Bala, K., Snavely, N.: Streetstyle: exploring world-wide clothing styles from millions of photos, arXiv preprint arxiv:1706.01869 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong KongChina
  2. 2.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations