Challenges in Knitted E-textiles

  • Amy ChenEmail author
  • Jeanne Tan
  • Xiaoming Tao
  • Philip Henry
  • Ziqian Bai
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 849)


This paper considers the progress made in E-textiles within knitted textiles and discusses what “Project Jacquard” and the debut of the woven Levi’s Commuter X Jacquard by Google jacket helps reveal about the relationship between E-textiles and textiles manufacturing. The paper considers research conducted within the fields of Art, Design and Technology, along with materials with interesting and novel properties that have been integrated into knitted textiles by practitioners and researchers. Such materials can embellish or enhance knitted fabric, from creating additional visual interest to practical functions. However, due to the physical properties of these types of materials, not all materials can be knitted into the fabric with ease; the optimal machine settings and techniques must be determined. Adapting to the physical characteristics of these innovative materials is a logical design requirement of the prototype development process but when we look to adopt the same principles as “Project Jacquard”; manufacturing knitted E-textiles to scale, the challenges of the material/machinery relationship become more of an issue. This raises the question as to whether it is better to develop the material for better textiles integration, or to optimize the production process to suit the material.


E-textiles Photonic textiles Polymeric optical fibers Knitted fabric Electronics Conductive yarn 


  1. 1.
    Cutecircuit (2009) The Galaxy Dress. Accessed 27 Nov 2016
  2. 2.
    Elektrocouture.: The Marlene Project - ElektroCouture | Bespoke Elektronic Fashion Technologies‏. Elektrocouture. (2017) Accessed 14 Sept 2017
  3. 3.
    Levi’s: Levi’s® Commuter™ Trucker Jacket with Jacquard™ by Google. Levi’s®. (2018).
  4. 4.
    Perner-Wilson, H., Buechley L., Satomi, M.: Handcrafting textile interfaces from a kit-of-no-parts. In: Paper presented at the Proceedings of the fifth International Conference on Tangible, Embedded, and Embodied Interaction, Funchal, Portugal (2011)Google Scholar
  5. 5.
    Karim, N., Afroj, S., Malandraki, A., Butterworth, S., Beach, C., Rigout, M., Novoselov, K.S., Casson, A.J., Yeates, S.G.: All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J. Mater. Chem. C 5(44), 11640–11648 (2017). Scholar
  6. 6.
    Fugetsu, B., Sano, E., Yu, H., Mori, K., Tanaka, T.: Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon 48(12), 3340–3345 (2010). Scholar
  7. 7.
    Wang, J., Long, H., Soltanian, S., Servati, P., Ko, F.: Electromechanical properties of knitted wearable sensors: part 1—theory. Text. Res. J. 84(1), 3–15 (2014). Scholar
  8. 8.
    SubTela, S.: White wall hanging. (2007).
  9. 9.
    Zeng, W.: Polymer optical fiber for smart textiles. In: Tao X. (ed.) Handbook of Smart Textiles. Springer Singapore, Singapore, pp 109–125. (2015). Scholar
  10. 10.
    Tan, J.: Photonic Fabrics for Fashion and Interior. In: Tao X. (ed.) Handbook of Smart Textiles. Springer Singapore, Singapore, pp 1005–1033. (2015). Scholar
  11. 11.
    Tan, J., Toomey, A.: CraftTech: Hybrid Frameworks for Smart Photonic Materials. Royal College of Art, UK (2018)Google Scholar
  12. 12.
    Chen, A.: Literature Review and Research Methodology. Creating an Effective E-textiles Toolkit for Fashion Design. Manchester Metropolitan Univerisity, Manchester (2017)Google Scholar
  13. 13.
    Blomstedt, B.: LUX: Exploring Interactive Knitted Textiles Through Light and Touch. University of Boras (2017)Google Scholar
  14. 14.
    Mbise, E., Dias, T., Hurley, W.: 6 - Design and manufacture of heated textiles. In: Electronic Textiles. Woodhead Publishing, Oxford, pp 117–132. (2015). Scholar
  15. 15.
    Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel 3-D spacer all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7(5), 1670–1679 (2014). Scholar
  16. 16.
    Chui, Y.T.: Creation of wearable electronic clothing addressing end-user needs. Hong Kong: Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (2017)Google Scholar
  17. 17.
    Poupyrev, I., Gong, N.-W., Fukuhara, S., Karagozler, M.E., Schwesig, C., Robinson, K.E.: Project jacquard: interactive digital textiles at scale. In: Paper presented at the Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, California, USA (2016)Google Scholar
  18. 18.
    Röpert, A.: Smart Textiles—How to Enter the Market. Berlin (2017)Google Scholar
  19. 19.
    Power, J.: 9—Developments in apparel knitting technology A2—Fairhurst, Catherine. In: Advances in Apparel Production. Woodhead Publishing, pp. 178–196. (2008). Scholar
  20. 20.
    StitchWorld.: Flat Knit Production A Comparative Analysis. Stitch World (2010)Google Scholar
  21. 21.
    Mecnika, V., Scheulen, K., Anderson, C.F., Hörr, M., Breckenfelder, C.: 7—Joining technologies for electronic textiles A2—Dias, Tilak. In: Electronic Textiles. Woodhead Publishing, Oxford, pp. 133–153. (2015). Scholar
  22. 22.
    Peppler, K., Sharpe, L., Glosson, D.: E-textiles and the new fundamentals of fine art. In: Buechley, L., Peppler, K., Eisenberg, M., Kafai, Y. (eds.) Textile Messages: Dispatches from the World of E-textiles and Education. Peter Lang Publishing Inc, New York (2013)Google Scholar
  23. 23.
    Bai, Z.: Innovative photonic textiles: the design, investigation and development of polymeric photonic fiber integrated textiles for interior furnishings. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amy Chen
    • 1
    Email author
  • Jeanne Tan
    • 1
  • Xiaoming Tao
    • 1
  • Philip Henry
    • 2
  • Ziqian Bai
    • 1
  1. 1.Institute of Textiles and ClothingHong Kong Polytechnic UniversityHong KongChina
  2. 2.School of DesignUniversity of LeedsLeedsUK

Personalised recommendations