Porous Medium Model in Contact with Slow Reservoirs

  • Renato de Paula
  • Patrícia GonçalvesEmail author
  • Adriana Neumann
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 258)


We analyse the hydrodynamic limit of the porous medium model in contact with slow reservoirs which is given by a porous medium equation with Dirichlet, Robin or Neumann boundary conditions depending on the range of the parameter that rules the slowness of the reservoirs.


Porous medium model Hydrodynamic limit Porous medium equation Boundary conditions 



A. N. was supported through a grant “L’ORÉAL-ABC-UNESCO Para Mulheres na Ciência”. P. G. thanks FCT/Portugal for support through the project UID/MAT/04459/2013. R. P. thanks FCT/Portugal for support through the project Lisbon Mathematics PhD (LisMath). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (grant agreement No 715734).


  1. 1.
    Baldasso, R., Menezes, O., Neumann, A., Souza, R.R.: Exclusion process with slow boundary. J. Stat. Phys. 167(5), 1112–1142 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bernardin, C., Gonçalves, P., Jiménez-Oviedo, B.: Slow to fast infinitelly extended reservoirs for the symmetric exclusion process with long jumps (2017). arXiv.1702.07216
  3. 3.
    Feller, W.: An Introduction to a Probability Theory and its Applications. Wiley Series in Probability and Mathematical Statistics, vol. 2 (1970)Google Scholar
  4. 4.
    Franco, T., Gonçalves, P., Neumann, A.: Phase transition of a heat equation with Robin’s boundary conditions and exclusion process. Trans. Am. Math. Soc. 367(9), 6131–6158 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gonçalves, P., Landim, C., Toninelli, C.: Hydrodynamic limit for a particle system with degenerate rates. Ann. Inst. H. Poincaré: Probab. Stat. 45(4), 887–909 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. In: Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 320. Springer, Berlin (1999)Google Scholar
  7. 7.
    Muskat, M.: The Flow of Homegeneous Fluids Through Porous Media. McGrawHill, New York (1937)zbMATHGoogle Scholar
  8. 8.
    Vazquez, J.L.: An introduction to the mathematical theory of the porous medium equation. In: Delfour, M.C., Sabidussi, G. (eds.) Shape Optimization and Free Boundaries, pp. 261–286. Kluwer, Dordrecht (1992)Google Scholar
  9. 9.
    Vazquez, J.L.: The Porous Medium Equation—Mathematical Theory. Claredon Press, Oxford (2007)zbMATHGoogle Scholar
  10. 10.
    Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena II. Academic Press, New York (1966)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Renato de Paula
    • 1
  • Patrícia Gonçalves
    • 1
    Email author
  • Adriana Neumann
    • 2
  1. 1.Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de LisboaLisboaPortugal
  2. 2.UFRGS, Instituto de Matemática, Campus do ValePorto AlegreBrazil

Personalised recommendations