Advertisement

Linear Boltzmann Equations: A Gradient Flow Formulation

  • Giada BasileEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 258)

Abstract

I present some results obtained together with D. Benedetto and L. Bertini on a gradient flow formulation of linear kinetic equations, in terms of an entropy dissipation inequality. The setting includes the current as a dynamical variable. As an application I discuss the diffusive limit of linear Boltzmann equations and show that the rescaled entropy inequality asymptotically provides the corresponding inequality for heat equation.

References

  1. 1.
    Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307(3), 791–815 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Spaces of Probability Measures. Lectures in Mathematics. ETH Zurich, Birkhuser (2005)zbMATHGoogle Scholar
  3. 3.
    Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617–649 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Basile, G., Olla, S., Spohn, H.: Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195(1), 171–203 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Basile, G., Benedetto, D., Bertini, L.: A gradient flow approach to linear Boltzmann equation. Preprint on arXiv:1707.09204 (2017)
  6. 6.
    Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Boundary Layers and Homogenization of Transport Processes, vol. 15, pp. 53–157. RIMS Kyoto University (1979)Google Scholar
  8. 8.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviations of the empirical current in interacting particle systems. Theory Probab. Appl. 51(1), 2–27 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bertini, L., Faggionato, A., Gabrielli, D.: Flows, currents, and cycles for Markov chains: large deviation asymptotics. Stoch. Process. Appl. 125(7), 2786–2819 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. Math. 203(2), 493–553 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dawson, D.A., Gärtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20(4), 247–308 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    De Giorgi, E., Marino, A., Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Serie 8 68(3), 180–187 (1980)Google Scholar
  13. 13.
    Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. II. Comm. Pure Appl. Math. 28, 1–47, ibid. 28, 279–301 (1975)Google Scholar
  14. 14.
    Erbar, M.: Gradient flows of the entropy for jump processes. Ann. Inst. H. Poincar Probab. Statist. 50(3), 920–945 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Erbar, M.: A gradient flow approach to the Boltzmann equation. Preprint on arXiv:1603.00540 (2017)
  16. 16.
    Esposito, R., Pulvirenti, M.: From particles to fluids. In: Hand-Book of Mathematical Fluid Dynamics III, pp. 1–82. North-Holland, Amsterdam (2004)Google Scholar
  17. 17.
    Gallavotti, G.: Grad Boltzmann limit and Lorentzs Gas. In: Statistical Mechanics. A Short Treatise. Appendix 1.A2. Springer, Berlin (1999)CrossRefGoogle Scholar
  18. 18.
    Gigli, N.: On the Heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Part. Diff. Eq. 39, 101–120 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kipnis, C., Olla, S.: Large deviations from the hydrodynamical limit for a system of independent Brownian particles. Stoch. Stoch. Rep. 33(1–2), 17–25 (1990)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Larsen, E., Keller, J.B.: Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15, 75–81 (1974)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lorentz, H.A.: The motion of electrons in metallic bodies. Proc. Acad. Amst. 7, 438–453 (1905)Google Scholar
  23. 23.
    Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261, 2250–2292 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differ. Equ. 48, 1–31 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mielke, A., Peletier, M.A., Renger, D.R.M.: On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41(4), 1293–1327 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equationGoogle Scholar
  27. 27.
    Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)MathSciNetCrossRefGoogle Scholar
  29. 29.
    van Beijeren, H., Lanford III, O.E., Lebowitz, J.L., Spohn, H.: Equilibrium time correlation functions in the low-density limit. J. Stat. Phys. 22(2), 237–257 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations