On the Fibonacci Universality Classes in Nonlinear Fluctuating Hydrodynamics

  • G. M. SchützEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 258)


We present a lattice gas model that without fine tuning of parameters is expected to exhibit the so far elusive modified Kardar–Parisi–Zhang (KPZ) universality class. To this end, we review briefly how non-linear fluctuating hydrodynamics in one dimension predicts that all dynamical universality classes in its range of applicability belong to an infinite discrete family which we call Fibonacci family since their dynamical exponents are the Kepler ratios \(z_i = F_{i+1}/F_{i}\) of neighbouring Fibonacci numbers \(F_i\), including diffusion (\(z_2=2\)), KPZ (\(z_3=3/2\)), and the limiting ratio which is the golden mean \(z_\infty =(1+\sqrt{5})/2\). Then we revisit the case of two conservation laws to which the modified KPZ model belongs. We also derive criteria on the macroscopic currents to lead to other non-KPZ universality classes.


  1. 1.
    Bernardin, C., Gonçalves, P.: Anomalous fluctuations for a perturbed Hamiltonian system with exponential interactions. Commun. Math. Phys. 325, 291–332 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bernardin, C., Gonçalves, P., Jara, M.: 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise. Arch. Ration. Mech. Anal. 220, 505–542 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chakraborty, S., Pal, S., Chatterjee, S., Barma, M.: Large compact clusters and fast dynamics in coupled nonequilibrium systems. Phys. Rev. E 93, 050102(R) (2016)CrossRefGoogle Scholar
  4. 4.
    Colaiori, F., Moore, M.A.: Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension. Phys. Rev. E 65, 017105 (2001)CrossRefGoogle Scholar
  5. 5.
    Devillard, P., Spohn, H.: Universality class of interface growth with reflection symmetry. J. Stat. Phys. 66, 1089–1099 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ertaş, D., Kardar, M.: Dynamic relaxation of drifting polymers: a phenomenological approach. Phys. Rev. E 48, 1228–1245 (1993)CrossRefGoogle Scholar
  7. 7.
    Ferrari, P.L., Sasamoto, T., Spohn, H.: Coupled Kardar-Parisi-Zhang equations in one dimension. J. Stat. Phys. 153, 377–399 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Frey, E., Täuber, U.C., Hwa, T.: Mode-coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424–4438 (1996)CrossRefGoogle Scholar
  9. 9.
    Fritz, J., Tóth, B.: Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas. Commun. Math. Phys. 249, 1–27 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Funaki, T.: Infinitesimal invariance for the coupled KPZ equations. Memoriam Marc Yor-Séminaire de Probabilités XLVII. Lecture Notes in Mathematics, vol. 2137, pp. 37–47. Springer, Switzerland (2015)Google Scholar
  11. 11.
    Grisi, R., Schütz, G.M.: Current symmetries for particle systems with several conservation laws. J. Stat. Phys. 145, 1499–1512 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Halpin-Healy, T., Takeuchi, K.A.: A KPZ Cocktail-Shaken, not Stirred. J. Stat. Phys. 160(4), 794–814 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kafri, Y., Levine, E., Mukamel, D., Schütz, G.M., Willmann, R.D.: Phase-separation transition in one-dimensional driven models. Phys. Rev. E 68, 035101(R) (2003)CrossRefGoogle Scholar
  14. 14.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999)CrossRefGoogle Scholar
  15. 15.
    Kundu, A., Dhar, A.: Equilibrium dynamical correlations in the Toda chain and other integrable models. Phys. Rev. E 94, 062130 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lepri, S. (ed.): Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921. Springer, Switzerland (2016)Google Scholar
  17. 17.
    Popkov, V., Salerno, M.: Hydrodynamic limit of multichain driven diffusive models. Phys. Rev. E 69, 046103 (2004)CrossRefGoogle Scholar
  18. 18.
    Popkov, V., Schmidt, J., Schütz, G.M.: Superdiffusive modes in two-species driven diffusive systems. Phys. Rev. Lett. 112, 200602 (2014)CrossRefGoogle Scholar
  19. 19.
    Popkov, V., Schmidt, J., Schütz, G.M.: Universality classes in two-component driven diffusive systems. J. Stat. Phys. 160, 835–860 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Fibonacci family of dynamical universality classes. Proc. Natl. Acad. Science USA 112(41), 12645–12650 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Exact scaling solution of the mode coupling equations for non-linear fluctuating hydrodynamics in one dimension, J. Stat. Mech. 093211 (2016)Google Scholar
  22. 22.
    Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ramaswamy, S., Barma, M., Das, D., Basu, A.: Phase diagram of a two-species lattice model with a linear instability. Phase Transit. 75, 363–375 (2002)CrossRefGoogle Scholar
  24. 24.
    Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London (2001)Google Scholar
  25. 25.
    Schütz, G.M., Wehefritz-Kaufmann, B.: Kardar-Parisi-Zhang modes in d-dimensional directed polymers. Phys. Rev. E 96, 032119 (2017)CrossRefGoogle Scholar
  26. 26.
    Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154, 1191–1227 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Spohn, H.: The Kardar-Parisi-Zhang equation—a statistical physics perspective. In: Schehr, G., Altland, A., Fyodorov, Y.V., O’Connell, N., Cugliandolo, L.F. (eds.) Les Houches Summer School July 2015 Session CIV "Stochastic Processes and Random Matrices". Oxford University Press, Oxford (2017)Google Scholar
  28. 28.
    Spohn, H., Stoltz, G.: Nonlinear fluctuating hydrodynamics in one dimension: the case of two conserved fields. J. Stat. Phys. 160, 861–884 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sudbury, A., Lloyd, P.: Quantum operators in classical probability theory: II. The concept of duality in interacting particle systems. Ann. Probab. 23(4), 1816–1830 (1995)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tóth, B., Valkó, B.: Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws. J. Stat. Phys. 112, 497–521 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Complex Systems IIJülichGermany

Personalised recommendations