Navier–Stokes Hydrodynamic Limit of BGK Kinetic Equations for an Inert Mixture of Polyatomic Gases

  • Marzia BisiEmail author
  • Giampiero Spiga
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 258)


We perform an hydrodynamic limit of BGK equations for an inert mixture of polyatomic gases, with molecular structure modelled by a set of discrete internal energy levels. An asymptotic Chapman–Enskog procedure provides consistent hydrodynamic equations at Navier–Stokes level for species number densities, global momentum and total (kinetic plus internal) energy. We explicitly compute diffusion velocities (with Fick matrix and Soret coefficients), pressure tensor (with the dynamical pressure typical of polyatomic gases), and heat flux (with Dufour effect).


Polyatomic gases BGK models Hydrodynamic equations Transport coefficients 



This work is performed in the frame of activities sponsored by INdAM–GNFM and by the University of Parma. M. Bisi acknowledges the kind invitation of the University of Minho to the conference From Particle Systems to Partial Differential Equations V (Braga, Portugal, November 2017), where some of these results have been presented.


  1. 1.
    Aimi, A., Diligenti, M., Groppi, M., Guardasoni, C.: On the numerical solution of a BGK-type model for chemical reactions. Eur. J. Mech. B Fluids 26, 455–472 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bisi, M., Cáceres, M.J.: A BGK relaxation model for polyatomic gas mixtures. Commun. Math. Sci. 14, 297–325 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bisi, M., Spiga, G.: On kinetic models for polyatomic gases and their hydrodynamic limits. Ric. Mat. 66, 113–124 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bisi, M., Spiga, G.: Hydrodynamic limits of kinetic equations for polyatomic and reactive gases. Commun. Appl. Ind. Math. 8, 23–42 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bisi, M., Càceres, M.J., Spiga, G.: A Bhatnagar-Gross-Krook kinetic approach to fast reactive mixtures: relaxation problems. Physica A 389, 4528–4544 (2010)CrossRefGoogle Scholar
  7. 7.
    Bisi, M., Groppi, M., Spiga, G.: Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit. Phys. Rev. E 81, 036327 (2010)CrossRefGoogle Scholar
  8. 8.
    Bisi, M., Monaco, R., Soares, A.J.: A BGK model for reactive mixtures of polyatomic gases with continuous internal energy. J. Phys. A - Math. Theor. 51, 125501 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bisi, M., Ruggeri, T., Spiga, G.: Dynamical pressure in a polyatomic gas: interplay between kinetic theory and extended thermodynamics. Kinet. Relat. Models 11, 71–95 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bourgat, J.F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases and Boltzmann theorem. Eur. J. Mech. B Fluids 13, 237–254 (1994)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Brull, S., Schneider, J.: On the ellipsoidal statistical model for polyatomic gases. Continuum Mech. Thermodyn. 20, 489–508 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non–Uniform. Gases. Cambridge University Press (1970)Google Scholar
  13. 13.
    Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24, 219–236 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North–Holland (1972)Google Scholar
  15. 15.
    Groppi, M., Spiga, G.: Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas. J. Math. Chem. 26, 197–219 (1999)CrossRefGoogle Scholar
  16. 16.
    Groppi, M., Spiga, G.: A Bhatnagar-Gross-Krook-type approach for chemically reactings gas mixtures. Phys. Fluids 16, 4273–4284 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Groppi, M., Rjasanow, S., Spiga, G.: A kinetic relaxation approach to fast reactive mixtures: shock wave structure. J. Stat. Mech. Theory Exp. 2009, P10010 (2009)CrossRefGoogle Scholar
  18. 18.
    Kremer, G.M., Pandolfi Bianchi, M., Soares, A.J.: A relaxation kinetic model for transport phenomena in a reactive flow. Phys. Fluids 18, 037104 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Monaco, R., Pandolfi Bianchi, M., Soares, A.J.: BGK-type models in strong reaction and kinetic chemical equilibrium regimes. J. Phys. A Math. Gen. 38, 10413–10431 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Physics and Computer ScienceUniversity of ParmaParmaItaly

Personalised recommendations