Advertisement

Postsurgical Pain Syndromes

  • Thomas J. Van de Ven
  • Amitabh Gulati
Chapter

Abstract

As cancer survival has improved, the number of patients suffering from the debilitating, painful after effects of cancer treatment has increased. Almost 50% of patients undergoing cancer-related surgery involving damage to a major peripheral nerve will develop chronic neuropathic pain. The well-known therapeutic limitations targeting already established neuropathic pain argue for intense investigation into preventive analgesics. Recent advances in our understanding of neuropathic pain mechanisms may allow effective preventive therapy in the near future.

Keywords

Chronic postsurgical pain Neuropathic pain Peripheral nerve injury Neuroinflammation Novel analgesics 

References

  1. 1.
    Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 2004;361:184–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Cohen SP, Raja SN. Prevention of chronic postsurgical pain: the ongoing search for the holy grail of anesthesiology. Anesthesiology. 2013;118:241–3.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Calvo M, Dawes JM, Bennett DL. The role of the immune system in the generation of neuropathic pain. Lancet Neurol. 2012;11:629–42.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010;16:1248–57.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Schreiber KL, Kehlet H, Belfer I, Edwards RR. Predicting, preventing and managing persistent pain after breast cancer surgery: the importance of psychosocial factors. Pain Manag. 2014;4:445–59.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gärtner R, Jensen MB, Nielsen J, Ewertz M. JAMA network | JAMA | prevalence of and factors associated with persistent pain following breast cancer surgery. JAMA. 2009;302(18):1985–92.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Jung BF, Ahrendt GM, Oaklander AL, Dworkin RH. Neuropathic pain following breast cancer surgery: proposed classification and research update. Pain. 2003;104:1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wallace MS, Wallace AM, Lee J, Dobke MK. Pain after breast surgery: a survey of 282 women. Pain. 1996;66:195–205.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Smith W, Bourne D, Squair J, Phillips DO, Chambers WA. A retrospective cohort study of post mastectomy pain syndrome. Pain. 1999;83:91–5.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fabro EAN, Bergmann A, do Amaral E, Silva B, Ribeiro ACP, de Souza Abrahão K, da Costa Leite Ferreira MG, de Almeida Dias R, Thuler LCS. Post-mastectomy pain syndrome: incidence and risks. Breast. 2012;21:321–5.CrossRefGoogle Scholar
  11. 11.
    de Menezes Couceiro TC, Valença MM, Raposo MCF, de Orange FA, Amorim MMR. Prevalence of post-mastectomy pain syndrome and associated risk factors: a cross-sectional cohort study. Pain Manag Nurs. 2013;  https://doi.org/10.1016/j.pmn.2013.07.011.CrossRefGoogle Scholar
  12. 12.
    Tiippana E, Nilsson E, Kalso E. Post-thoracotomy pain after thoracic epidural analgesia: a prospective follow-up study. Acta Anaesthesiol Scand. 2003;47:433–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Song JG, Shin JW, Lee EH, Choi DK, Bang JY, Chin JH, Choi IC. Incidence of post-thoracotomy pain: a comparison between total intravenous anaesthesia and inhalation anaesthesia. Eur J Cardiothorac Surg. 2012;41:1078–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sentürk M, Ozcan PE, Talu GK, Kiyan E, Camci E, Ozyalçin S, Dilege S, Pembeci K. The effects of three different analgesia techniques on long-term postthoracotomy pain. Anesth Analg. 2002;94:11–5. –tableofcontents.PubMedCrossRefGoogle Scholar
  15. 15.
    Yarnitsky D, Crispel Y, Eisenberg E, Granovsky Y, Ben-Nun A, Sprecher E, Best L-A, Granot M. Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk. Pain. 2008;138:22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kinney MAO, Mantilla CB, Carns PE, Passe MA, Brown MJ, Hooten WM, Curry TB, Long TR, Wass CT, Wilson PR, Weingarten TN, Huntoon MA, Rho RH, Mauck WD, Pulido JN, Allen MS, Cassivi SD, Deschamps C, Nichols FC, Shen KR, Wigle DA, Hoehn SL, Alexander SL, Hanson AC, Schroeder DR. Preoperative gabapentin for acute post-thoracotomy analgesia: a randomized, double-blinded, active placebo-controlled study. Pain Pract. 2012;12:175–83.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hanley MA, Jensen MP, Ehde DM, Hoffman AJ, Patterson DR, Robinson LR. Psychosocial predictors of long-term adjustment to lower-limb amputation and phantom limb pain. Disabil Rehabil. 2004;26:882–93.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hinrichs-Rocker A, Schulz K, Järvinen I, Lefering R, Simanski C, Neugebauer EAM. Psychosocial predictors and correlates for chronic post-surgical pain (CPSP) – a systematic review. Eur J Pain. 2009;13:719–30.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Belfer I, Schreiber KL, Shaffer JR, Shnol H, Blaney K, Morando A, Englert D, Greco C, Brufsky A, Ahrendt G, Kehlet H, Edwards RR, Bovbjerg DH. Persistent postmastectomy pain in breast cancer survivors: analysis of clinical, demographic, and psychosocial factors. J Pain. 2013;14:1185–95.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jensen MP, Ehde DM, Hoffman AJ, Patterson DR, Czerniecki JM, Robinson LR. Cognitions, coping and social environment predict adjustment to phantom limb pain. Pain. 2002;95:133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Katz J, Jackson M, Kavanagh BP, Sandler AN. Acute pain after thoracic surgery predicts long-term post-thoracotomy pain. Clin J Pain. 1996;12:50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nikolajsen L, Ilkjær S, Krøner K, Christensen JH, Jensen TS. The influence of preamputation pain on postamputation stump and phantom pain. Pain. 1997;72:393–405.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Van de Ven TJ, John Hsia H-L. Causes and prevention of chronic postsurgical pain. Curr Opin Crit Care. 2012;18:366–71.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lu Y-L, Wang X-D, Lai R-C. Correlation of acute pain treatment to occurrence of chronic pain in tumor patients after thoracotomy. Ai Zheng. 2008;27:206–9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bach S, Noreng MF, Tjéllden NU. Phantom limb pain in amputees during the first 12 months following limb amputation, after preoperative lumbar epidural blockade. Pain. 1988;33:297–301.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Fisher A, Meller Y. Continuous postoperative regional analgesia by nerve sheath block for amputation surgery – a pilot study. Anesth Analg. 1991;72:300–3.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Nikolajsen L, Ilkjær S, Christensen JH, Krøner K, Jensen TS. Randomised trial of epidural bupivacaine and morphine in prevention of stump and phantom pain in lower-limb amputation. Lancet. 1997;350:1353–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Karanikolas M, Aretha D, Tsolakis I, Monantera G, Kiekkas P, Papadoulas S, Swarm RA, Filos KS. Optimized perioperative analgesia reduces chronic phantom limb pain intensity, prevalence, and frequency: a prospective, randomized, clinical trial. Anesthesiology. 2011;114:1144–54.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Pinzur MS, Garla PG, Pluth T, Vrbos L. Continuous postoperative infusion of a regional anesthetic after an amputation of the lower extremity. A randomized clinical trial. J Bone Joint Surg Am. 1996;78:1501–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ju H, Feng Y, Yang B-X, Wang J. Comparison of epidural analgesia and intercostal nerve cryoanalgesia for post-thoracotomy pain control. Eur J Pain. 2008;12:378–84.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kavanagh BP, Katz J, Sandler AN, Nierenberg H, Roger S, Boylan JF, Laws AK. Multimodal analgesia before thoracic surgery does not reduce postoperative pain. Br J Anaesth. 1994;73(2):184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Borghi B, D’Addabbo M, White PF, Gallerani P, Toccaceli L, Raffaeli W, Tognù A, Fabbri N, Mercuri M. The use of prolonged peripheral neural blockade after lower extremity amputation: the effect on symptoms associated with phantom limb syndrome. Anesth Analg. 2010;111:1308–15.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Andreae MH, Andreae DA. Regional anaesthesia to prevent chronic pain after surgery: a Cochrane systematic review and meta-analysis. Br J Anaesth. 2013;111:711–20.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hayes C, Armstrong-Brown A, Burstal R. Perioperative intravenous ketamine infusion for the prevention of persistent post-amputation pain: a randomized, controlled trial. Anaesth Intensive Care. 2004;32:330–8.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nikolajsen L, Finnerup NB, Kramp S, Vimtrup A-S, Keller J, Jensen TS. A randomized study of the effects of gabapentin on postamputation pain. Anesthesiology. 2006;105:1008–15.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Schley M, Topfner S, Wiech K, Schaller HE, Konrad CJ, Schmelz M, Birbaumer N. Continuous brachial plexus blockade in combination with the NMDA receptor antagonist memantine prevents phantom pain in acute traumatic upper limb amputees. Eur J Pain. 2007;11:299–308.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Dualé C, Sibaud F, Guastella V, Vallet L, Gimbert Y-A, Taheri H, Filaire M, Schoeffler P, Dubray C. Perioperative ketamine does not prevent chronic pain after thoracotomy. Eur J Pain. 2009;13:497–505.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Suzuki M, Haraguti S, Sugimoto K, Kikutani T, Shimada Y, Sakamoto A. Low-dose intravenous ketamine potentiates epidural analgesia after thoracotomy. Anesthesiology. 2006;105:111–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chaparro LE, Smith SA, Moore RA, Wiffen PJ, Gilron I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst Rev. 2013;7:CD008307.Google Scholar
  40. 40.
    Clarke H, Wijeysundera DN, Bonin RP, Orser B, Englesakis M, Katz J. Pregabalin effective for the prevention of chronic postsurgical pain: really? Reply. Anesth Analg. 2013;116:508–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Chelly JE. Pregabalin effective for the prevention of chronic postsurgical pain: really? Anesth Analg. 2013;116:507–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2–S15.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wall PD. The prevention of postoperative pain. Pain. 1988;33:289–90.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306:686–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10:1361–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res. 2009;196:115–28.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7:S3–S12.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13(7):533.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ellis A, Bennett DLH. Neuroinflammation and the generation of neuropathic pain. Br J Anaesth. 2013;111:26–37.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sun Q, Tu H, Xing G-G, Han J-S, Wan Y. Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol. 2005;191:128–36.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Liu XJ, Gingrich JR, Vargas-Caballero M, Dong YN, Sengar A, Beggs S, Wang S-H, Ding HK, Frankland PW, Salter MW. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat Med. 2008;14:1325–32.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wilson JA, Garry EM, Anderson HA, Rosie R, Colvin LA, Mitchell R, Fleetwood-Walker SM. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists. Pain. 2005;117:421–32.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ultenius C, Linderoth B, Meyerson BA, Wallin J. Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat. Neurosci Lett. 2006;399:85–90.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16:1258–66.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun Y-Y, Ji R-R, Xiong L. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest. 2013;123:4050–62.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Coull JAM, Boudreau D, Bachand K, Prescott SA, Nault F, Sík A, De Koninck P, De Koninck Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424:938–42.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010;16:1248–57.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hucho T, Levine JD. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron. 2007;55:365–76.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hu P, McLachlan EM. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience. 2002;112:23–38.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kim CF, Moalem-Taylor G. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res. 2011;1405:95–108.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hu P, McLachlan EM. Distinct functional types of macrophage in dorsal root ganglia and spinal nerves proximal to sciatic and spinal nerve transections in the rat. Exp Neurol. 2003;184:590–605.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Zhuang Z-Y, Kawasaki Y, Tan P-H, Wen Y-R, Huang J, Ji R-R. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun. 2007;21:642–51.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ji R-R, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013:1–19.  https://doi.org/10.1016/j.pain.2013.06.022.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Calvo M, Bennett DLH. The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol. 2012;234:271–82.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol. 2014;14:217–31.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kawasaki Y, Zhang L, Cheng J-K, Ji R-R. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28:5189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–21.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol. 2012;234:362–72.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wen Y-R, Suter MR, Kawasaki Y, Huang J, Pertin M, Kohno T, Berde CB, Decosterd I, Ji R-R. Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology. 2007;107:312–21.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hathway GJ, Vega-Avelaira D, Moss A, Ingram R, Fitzgerald M. Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain. 2009;144:110–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Karai L, Brown DC, Mannes AJ, Connelly ST, Brown J, Gandal M, Wellisch OM, Neubert JK, Olah Z, Iadarola MJ. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest. 2004;113:1344–52.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Peters CM, Ririe D, Houle TT, Aschenbrenner CA, Eisenach JC. Nociceptor-selective peripheral nerve block induces delayed mechanical hypersensitivity and neurotoxicity in rats. Anesthesiology. 2014;120:976–86.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lee J-H, Park C-K, Chen G, Han Q, Xie R-G, Liu T, Ji R-R, Lee S-Y. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. 2014;157:1393–404.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Obata K. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci. 2004;24:10211–22.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Matsuoka Y, Yang J. Selective inhibition of extracellular signal-regulated kinases 1/2 blocks nerve growth factor to brain-derived neurotrophic factor signaling and suppresses the development of and reverses already established pain behavior in rats. Neuroscience. 2012;206:224–36.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003;23(10):4017–22.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Schäfers M, Brinkhoff J, Neukirchen S, Marziniak M, Sommer C. Combined epineurial therapy with neutralizing antibodies to tumor necrosis factor-alpha and interleukin-1 receptor has an additive effect in reducing neuropathic pain in mice. Neurosci Lett. 2001;310:113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sommer C, Petrausch S, Lindenlaub T, Toyka KV. Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neurosci Lett. 1999;270:25–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Macrophage inflammatory protein-1 alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1 beta up-regulation. Pain. 2010;149:305–15.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Padi SSV, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 2008;601:79–87.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Lin C, Tsaur M, Chen C, Wang T, Lin C, Lai Y, Hsu T, Pan Y, Yang C, Cheng J. Chronic intrathecal infusion of minocycline prevents the development of spinal-nerve ligation–induced pain in rats. Reg Anesth Pain Med. 2007;32:209–16.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Raghavendra V. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther. 2003;306:624–30.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Zhang J, Wu D, Xie C, Wang H, Wang W, Zhang H, Liu R, Xu L-X, Mei X-P. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain. Edited by Siegel A. PloS One. 2013;8:e72943.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Raghavendra V, Tanga F, Rutkowski MD, DeLeo JA. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain. 2003;104:655–64.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lu C-H, Chao P-C, Borel CO, Yang C-P, Yeh C-C, Wong C-S, Wu C-T. Preincisional intravenous pentoxifylline attenuating perioperative cytokine response, reducing morphine consumption, and improving recovery of bowel function in patients undergoing colorectal cancer surgery. Anesth Analg. 2004;99:1465–71. tableofcontents.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wordliczek J, Szczepanik AM, Banach M, Turchan J, Zembala M, Siedlar M, Przewlocki R, Serednicki W, Przewlocka B. The effect of pentoxifylline on post-injury hyperalgesia in rats and postoperative pain in patients. Life Sci. 2000;66:1155–64.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Genevay S, Finckh A, Zufferey P, Viatte S, Balagué F, Gabay C. Adalimumab in acute sciatica reduces the long-term need for surgery: a 3-year follow-up of a randomised double-blind placebo-controlled trial. Ann Rheum Dis. 2012;71:560–2.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Thacker MA, Clark AK, Bishop T, Grist J, Yip PK, Moon LDF, Thompson SWN, Marchand F, McMahon SB. CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur J Pain. 2009;13:263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-a expression. Pain. 1998;74:35–42.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kawasaki Y, Xu Z-Z, Wang X, Park JY, Zhuang Z-Y, Tan P-H, Gao Y-J, Roy K, Corfas G, Lo EH, Ji R-R. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14:331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104:10655–60.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Berta T, Park C-K, Xu Z-Z, Xie R-G, Liu T, Lü N, Liu Y-C, Ji R-R. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J Clin Invest. 2014;124:1173–86.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ortega-Gómez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med. 2013;5:661–74.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LAJ, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21:325–32.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–61.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Park C-K, Lü N, Xu Z-Z, Liu T, Serhan CN, Ji R-R. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci. 2011;31:15072–85.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Park C-K, Xu Z-Z, Liu T, Lü N, Serhan CN, Ji R-R. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci. 2011;31:18433–8.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Xu Z-Z, Liu X-J, Berta T, Park C-K, Lü N, Serhan CN, Ji R-R. Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann Neurol. 2013;74:490–5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kooijman CM, Dijkstra PU, Geertzen JH, Elzinga A, van der Schans CP. Phantom pain and phantom sensations in upper limb amputees: an epidemiological study. Pain. 2000;87:33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kern U, Busch V, Rockland M, Kohl M, Birklein F. Prevalence and risk factors of phantom limb pain and phantom limb sensations in Germany. A nationwide field survey. Schmerz. 2009;23:479–88.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Steegers MAH, Snik DM, Verhagen AF, van der Drift MA, Wilder-Smith OHG. Only half of the chronic pain after thoracic surgery shows a neuropathic component. J Pain. 2008;9:955–61.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas J. Van de Ven
    • 1
  • Amitabh Gulati
    • 2
  1. 1.Duke University Medical Center and Durham VAMC, Department of AnesthesiologyDurhamUSA
  2. 2.Department of Anesthesiology and Critical CareMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations