Advertisement

Non-opioid Intravenous Infusions for Management of Cancer-Associated Pain

  • Yury Khelemsky
  • Mourad M. Shehabar
Chapter

Abstract

Opioids have long been at the foundation of treating cancer-related pain; however, non-opioid intravenous infusions have become meaningful alternatives and adjuncts. Cancer-associated pain, which results from the disease process or as sequelae of treatment, is often challenging to control and may not respond to standard analgesic regimens. Lidocaine, ketamine, bisphosphonates, as well as various radioisotopes have been utilized as infusions to provide analgesia and decrease reliance on opioids, which have numerous unfavorable side effects.

Keywords

Cancer-related pain Infusion Lidocaine Ketamine Bisphosphonate Strontium-89 Radium-223 Denosumab 

References

  1. 1.
    Finkel JC, Pestieau SR, Quezado ZM. Ketamine as an adjuvant for treatment of cancer pain in children and adolescents. J Pain. 2007;8:515–21.CrossRefGoogle Scholar
  2. 2.
    Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104:570–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Drake R, Longworth J, Collins JJ. Opioid rotation in children with cancer. J Palliat Med. 2004;7:419–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Shinde S, Gordon P, Sharma P, Gross J, Davis MP. Use of non-opioid analgesics as adjuvants to opioid analgesia for cancer pain management in an inpatient palliative unit: does this improve pain control and reduce opioid requirements? Support Care Cancer. 2014;23(3):695–703.PubMedCrossRefGoogle Scholar
  5. 5.
    Eidelman A, White T, Swarm RA. Interventional therapies for cancer pain management: important adjuvants to systemic analgesics. J Natl Compr Canc Netw. 2007;5:753–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth. 1989;36:186–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Conway M, White N, Jean CS, Zempsky WT, Steven K. Use of continuous intravenous ketamine for end-stage cancer pain in children. J Pediatr Oncol Nurs. 2009;26:100–6.CrossRefGoogle Scholar
  8. 8.
    Berger JM, Ryan A, Vadivelu N, Merriam P, Rever L, Harrison P. Ketamine-fentanyl-midazolam infusion for the control of symptoms in terminal life care. Am J Hosp Palliat Care. 2000;17:127–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Clark JL, Kalan GE. Effective treatment of severe cancer pain of the head using low-dose ketamine in an opioid-tolerant patient. J Pain Symptom Manag. 1995;10:310–4.CrossRefGoogle Scholar
  10. 10.
    Chung WJ, Pharo GH. Successful use of ketamine infusion in the treatment of intractable cancer pain in an outpatient. J Pain Symptom Manag. 2007;33:2–5.CrossRefGoogle Scholar
  11. 11.
    Romero TR, Galdino GS, Silva GC, et al. Ketamine activates the L-arginine/Nitric oxide/cyclic guanosine monophosphate pathway to induce peripheral antinociception in rats. Anesth Analg. 2011;113:1254–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta A, Devi LA, Gomes I. Potentiation of μ-opioid receptor-mediated signaling by ketamine. J Neurochem. 2011;119:294–302.PubMedCrossRefGoogle Scholar
  13. 13.
    Arendt-Nielsen L, Mansikka H, Staahl C, et al. A translational study of the effects of ketamine and pregabalin on temporal summation of experimental pain. Reg Anesth Pain Med. 2011;36:585–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Hagelberg NM, Peltoniemi MA, Saari TI, et al. Clarithromycin, a potent inhibitor of CYP3A, greatly increases exposure to oral S-ketamine. Eur J Pain. 2010;14:625–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Bell RF. Ketamine for chronic non-cancer pain. Pain. 2009;141:210–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for pain in adults and children with cancer: a systematic review and synthesis of the literature. Pain Med. 2013;14:1505–17.PubMedCrossRefGoogle Scholar
  17. 17.
    Hardy J, Quinn S, Fazekas B, et al. Randomized, double-blind, placebo-controlled study to assess the efficacy and toxicity of subcutaneous ketamine in the management of cancer pain. J Clin Oncol. 2012;30:3611–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Bell RF, Eccleston C, Kalso E. Ketamine as adjuvant to opioids for cancer pain. A qualitative systematic review. J Pain Symptom Manag. 2003;26:867–75.CrossRefGoogle Scholar
  19. 19.
    Gilliland HE, Prasad BK, Mirakhur RK, Fee JP. An investigation of the potential morphine sparing effect of midazolam. Anaesthesia. 1996;51:808–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Okamoto Y, Tsuneto S, Tanimukai H, et al. Can gradual dose titration of ketamine for management of neuropathic pain prevent psychotomimetic effects in patients with advanced cancer? Am J Hosp Palliat Care. 2013;30:450–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Noppers I, Niesters M, Aarts L, Smith T, Sarton E, Dahan A. Ketamine for the treatment of chronic non-cancer pain. Expert Opin Pharmacother. 2010;11:2417–29.PubMedCrossRefGoogle Scholar
  22. 22.
    Cortiñas-Saenz M, Alonso-Menoyo MB, Errando-Oyonarte CL, Alférez-García I, Carricondo-Martínez MA. Effect of sub-anaesthetic doses of ketamine in the postoperative period in a patient with uncontrolled depression. Rev Esp Anestesiol Reanim. 2013;60:110–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Larkin GL, Beautrais AL. A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int J Neuropsychopharmacol. 2011;14:1127–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Jackson K, Ashby M, Martin P, Pisasale M, Brumley D, Hayes B. “Burst” ketamine for refractory cancer pain: an open-label audit of 39 patients. J Pain Symptom Manag. 2001;22:834–42.CrossRefGoogle Scholar
  25. 25.
    Massey GV, Pedigo S, Dunn NL, Grossman NJ, Russell EC. Continuous lidocaine infusion for the relief of refractory malignant pain in a terminally ill pediatric cancer patient. J Pediatr Hematol Oncol. 2002;24:566–8.CrossRefGoogle Scholar
  26. 26.
    Nagaro T, Shimizu C, Inoue H, et al. The efficacy of intravenous lidocaine on various types of neuropathic pain. Masui. 1995;44:862–7.PubMedGoogle Scholar
  27. 27.
    Ferrante FM, Paggioli J, Cherukuri S, Arthur GR. The analgesic response to intravenous lidocaine in the treatment of neuropathic pain. Anesth Analg. 1996;82:91–7.PubMedGoogle Scholar
  28. 28.
    Kajiume T, Sera Y, Nakanuno R, et al. Continuous intravenous infusion of ketamine and lidocaine as adjuvant analgesics in a 5-year-old patient with neuropathic cancer pain. J Palliat Med. 2012;15:719–22.CrossRefGoogle Scholar
  29. 29.
    Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol. 2006;2:95–106.PubMedCrossRefGoogle Scholar
  30. 30.
    Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93:858–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Sharma S, Rajagopal MR, Palat G, Singh C, Haji AG, Jain D. A phase II pilot study to evaluate use of intravenous lidocaine for opioid-refractory pain in cancer patients. J Pain Symptom Manag. 2009;37:85–93.CrossRefGoogle Scholar
  32. 32.
    Groudine SB, Fisher HA, Kaufman RP, et al. Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth Analg. 1998;86:235–9.PubMedGoogle Scholar
  33. 33.
    Rimbäck G, Cassuto J, Tollesson PO. Treatment of postoperative paralytic ileus by intravenous lidocaine infusion. Anesth Analg. 1990;70:414–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Dirks J, Fabricius P, Petersen KL, Rowbotham MC, Dahl JB. The effect of systemic lidocaine on pain and secondary hyperalgesia associated with the heat/capsaicin sensitization model in healthy volunteers. Anesth Analg. 2000;91:967–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Kuo CP, Jao SW, Chen KM, et al. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br J Anaesth. 2006;97:640–6.PubMedCrossRefGoogle Scholar
  36. 36.
    McCleane G. Intravenous lidocaine: an outdated or underutilized treatment for pain? J Palliat Med. 2007;10:798–805.PubMedCrossRefGoogle Scholar
  37. 37.
    Koppert W, Weigand M, Neumann F, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg. 2004;98:1050–5. table of contents.PubMedCrossRefGoogle Scholar
  38. 38.
    Tikuisis R, Miliauskas P, Samalavicius NE, Zurauskas A, Samalavicius R, Zabulis V. Intravenous lidocaine for post-operative pain relief after hand-assisted laparoscopic colon surgery: a randomized, placebo-controlled clinical trial. Tech Coloproctol. 2014;18:373–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Kang JG, Kim MH, Kim EH, Lee SH. Intraoperative intravenous lidocaine reduces hospital length of stay following open gastrectomy for stomach cancer in men. J Clin Anesth. 2012;24:465–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Ferrini R, Paice JA. How to initiate and monitor infusional lidocaine for severe and/or neuropathic pain. J Support Oncol. 2004;2:90–4.PubMedGoogle Scholar
  41. 41.
    Adami S. Bisphosphonates in prostate carcinoma. Cancer. 1997;80:1674–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Rubens RD. Bone metastases—the clinical problem. Eur J Cancer. 1998;34:210–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Addeo R, Nocera V, Faiola V, et al. Management of pain in elderly patients receiving infusion of zoledronic acid for bone metastasis: a single-institution report. Support Care Cancer. 2008;16:209–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Green JR, Müller K, Jaeggi KA. Preclinical pharmacology of CGP 42′446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res. 1994;9:745–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Berenson JR, Rosen L, Vescio R, et al. Pharmacokinetics of pamidronate disodium in patients with cancer with normal or impaired renal function. J Clin Pharmacol. 1997;37:285–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Green JR, Seltenmeyer Y, Jaeggi KA, Widler L. Renal tolerability profile of novel, potent bisphosphonates in two short-term rat models. Pharmacol Toxicol. 1997;80:225–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Berenson JR, Vescio RA, Rosen LS, et al. A phase I dose-ranging trial of monthly infusions of zoledronic acid for the treatment of osteolytic bone metastases. Clin Cancer Res. 2001;7:478–85.PubMedGoogle Scholar
  48. 48.
    Body JJ. Breast cancer: bisphosphonate therapy for metastatic bone disease. Clin Cancer Res. 2006;12:6258s–63s.PubMedCrossRefGoogle Scholar
  49. 49.
    Van Poznak CH, Temin S, Yee GC, et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol. 2011;29:1221–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Pecherstorfer M. Managing neoplastic bone disease with ibandronic acid: a preclinical and clinical data update. Expert Opin Pharmacother. 2008;9:3111–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Body JJ, Mancini I. Bisphosphonates for cancer patients: why, how, and when? Support Care Cancer. 2002;10:399–407.PubMedCrossRefGoogle Scholar
  52. 52.
    Cameron D. Patient management issues in metastatic bone disease. Semin Oncol. 2004;31:79–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Guay DR. Ibandronate, an experimental intravenous bisphosphonate for osteoporosis, bone metastases, and hypercalcemia of malignancy. Pharmacotherapy. 2006;26:655–73.PubMedCrossRefGoogle Scholar
  54. 54.
    Hillner BE, Ingle JN, Chlebowski RT, et al. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol. 2003;21:4042–57.PubMedCrossRefGoogle Scholar
  55. 55.
    Tanvetyanon T, Stiff PJ. Management of the adverse effects associated with intravenous bisphosphonates. Ann Oncol. 2006;17:897–907.PubMedCrossRefGoogle Scholar
  56. 56.
    Migliorati CA, Schubert MM, Peterson DE, Seneda LM. Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy. Cancer. 2005;104:83–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Body JJ. Effectiveness and cost of bisphosphonate therapy in tumor bone disease. Cancer. 2003;97:859–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Cartenì G, Bordonaro R, Giotta F, et al. Efficacy and safety of zoledronic acid in patients with breast cancer metastatic to bone: a multicenter clinical trial. Oncologist. 2006;11:841–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Drudge-Coates L. Improving management of patients with advanced cancer. Patient Prefer Adher. 2010;4:415–24.CrossRefGoogle Scholar
  60. 60.
    Ripamonti C, Fagnoni E, Campa T, et al. Decreases in pain at rest and movement-related pain during zoledronic acid treatment in patients with bone metastases due to breast or prostate cancer: a pilot study. Support Care Cancer. 2007;15:1177–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Wardley A, Davidson N, Barrett-Lee P, et al. Zoledronic acid significantly improves pain scores and quality of life in breast cancer patients with bone metastases: a randomised, crossover study of community vs hospital bisphosphonate administration. Br J Cancer. 2005;92:1869–76.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bauss F, Russell RG. Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing. Osteoporos Int. 2004;15:423–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996;334:488–93.PubMedCrossRefGoogle Scholar
  64. 64.
    Coleman RE. Efficacy of zoledronic acid and pamidronate in breast cancer patients: a comparative analysis of randomized phase III trials. Am J Clin Oncol. 2002;25:S25–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Mancini I, Dumon JC, Body JJ. Efficacy and safety of ibandronate in the treatment of opioid-resistant bone pain associated with metastatic bone disease: a pilot study. J Clin Oncol. 2004;22:3587–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Body JJ, Bartl R, Burckhardt P, et al. Current use of bisphosphonates in oncology. International Bone and Cancer Study Group. J Clin Oncol. 1998;16:3890–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer. 2000;88:1082–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosen LS, Gordon D, Tchekmedyian NS, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized, Phase III, double-blind, placebo-controlled trial. Cancer. 2004;100:2613–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Italiano A, Ciais C, Chamorey E, et al. Home infusions of biphosphonate in cancer patients: a prospective study. J Chemother. 2006;18:217–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Baumrucker S. Palliation of painful bone metastases: Strontium-89. Am J Hosp Palliat Care. 1998;15:113–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Mertens WC, Stitt L, Porter AT. Strontium 89 therapy and relief of pain in patients with prostatic carcinoma metastatic to bone: a dose response relationship? Am J Clin Oncol. 1993;16:238–42.PubMedCrossRefGoogle Scholar
  72. 72.
    Mertens WC, Porter AT, Reid RH, Powe JE. Strontium-89 and low-dose infusion cisplatin for patients with hormone refractory prostate carcinoma metastatic to bone: a preliminary report. J Nucl Med. 1992;33:1437–43.PubMedGoogle Scholar
  73. 73.
    Zenda S, Nakagami Y, Toshima M, et al. Strontium-89 (Sr-89) chloride in the treatment of various cancer patients with multiple bone metastases. Int J Clin Oncol. 2013;19(4):739–43.PubMedCrossRefGoogle Scholar
  74. 74.
    Taylor AJ. Strontium-89 for the palliation of bone pain due to metastatic disease. J Nucl Med. 1994;35:2054.PubMedGoogle Scholar
  75. 75.
    Hansen DV, Holmes ER, Catton G, Thorne DA, Chadwick DH, Schmutz DA. Strontium-89 therapy for painful osseous metastatic prostate and breast cancer. Am Fam Physician. 1993;47:1795–800.PubMedGoogle Scholar
  76. 76.
    Second-line treatment of metastatic prostate cancer. Prednisone and radiotherapy for symptom relief. Prescrire Int. 2013;22:74–8.Google Scholar
  77. 77.
    Baczyk M, Baczyk E, Sowiński J. Preliminary results of combined application of radioisotopes and biphosphonates in the management of pain associated with osteoblastic-osteolytic bone metastases of breast cancer. Ortop Traumatol Rehabil. 2003;5:234–7.PubMedGoogle Scholar
  78. 78.
    Pirayesh E, Amoui M, Mirzaee HR, et al. Phase 2 study of a high dose of 186Re-HEDP for bone pain palliation in patients with widespread skeletal metastases. J Nucl Med Technol. 2013;41:192–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Serafini AN. Samarium Sm-153 lexidronam for the palliation of bone pain associated with metastases. Cancer. 2000;88:2934–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Henriksen G, Fisher DR, Roeske JC, Bruland Ø, Larsen RH. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252–9.PubMedGoogle Scholar
  81. 81.
    Radium – 223 (Xofigo) for prostate cancer. Med Lett Drugs Ther. 2013;55:79–80.Google Scholar
  82. 82.
    Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Lange PH, Vessella RL. Mechanisms, hypotheses and questions regarding prostate cancer micrometastases to bone. Cancer Metastasis Rev. 1998;17:331–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Takalkar A, Adams S, Subbiah V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone. Exp Hematol Oncol. 2014;3:23.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kerr C. (223)Ra targets skeletal metastases and spares normal tissue. Lancet Oncol. 2002;3:453.PubMedCrossRefGoogle Scholar
  86. 86.
    Shirley M, McCormack PL. Radium-223 dichloride: a review of its use in patients with castration-resistant prostate cancer with symptomatic bone metastases. Drugs. 2014;74:579–86.PubMedCrossRefGoogle Scholar
  87. 87.
    Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: α therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74.PubMedCrossRefGoogle Scholar
  88. 88.
    Den RB, Doyle LA, Knudsen KE. Practical guide to the use of radium 223 dichloride. Can J Urol. 2014;21:70–6.PubMedGoogle Scholar
  89. 89.
    Parker CC, Pascoe S, Chodacki A, et al. A randomized, double-blind, dose-finding, multicenter, phase 2 study of radium chloride (Ra 223) in patients with bone metastases and castration-resistant prostate cancer. Eur Urol. 2013;63:189–97.PubMedCrossRefGoogle Scholar
  90. 90.
    Coleman R, Aksnes AK, Naume B, et al. A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res Treat. 2014;145:411–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zustovich F, Fabiani F. Therapeutic opportunities for castration-resistant prostate cancer patients with bone metastases. Crit Rev Oncol Hematol. 2014;91:197–209.PubMedCrossRefGoogle Scholar
  92. 92.
    Menshawy A, et al. Denosumab versus bisphosphonates in patients with advanced cancers-related bone metastasis: systematic review and meta-analysis of randomized controlled trials. Support Care Cancer. 2018;26(4):1029–38. Epub Feb 1 2018.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yury Khelemsky
    • 1
  • Mourad M. Shehabar
    • 1
  1. 1.Icahn School of Medicine at Mount Sinai, Department of AnesthesiologyNew YorkUSA

Personalised recommendations