Advertisement

Ablative Techniques for Painful Metastasis (Radiofrequency ablation, Microwave ablation, Cryoablation, Chemical ablation, and HIFU)

  • Hooman Yarmohammadi
Chapter

Abstract

Cancer pain remains a common devastating and debilitating problem that negatively impacts cancer patients’ quality of life. Multiple methods have been developed for palliative cancer pain control. In this chapter, the most common ablative techniques that are being implemented for treatment of intractable pain secondary to cancer will be described, and their applications will be elucidated.

Keywords

Interventional radiology Interventional oncology Cancer pain Ablation Microwave Cryoablation High-intensity focused ultrasound Palliation 

References

  1. 1.
    Valeberg BT, Miaskowski C, Hanestad BR, Bjordal K, Moum T, Rustoen T. Prevalence rates for and predictors of self-reported adherence of oncology outpatients with analgesic medications. Clin J Pain. 2008;24(7):627–36.PubMedGoogle Scholar
  2. 2.
    Fitzgibbon D. Interventional procedures for cancer pain management: selecting the right procedure at the right time. J Support Oncol. 2010;8(2):60–1.PubMedGoogle Scholar
  3. 3.
    Wu JS, Wong R, Johnston M, Bezjak A, Whelan T. Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases. Int J Radiat Oncol Biol Phys. 2003;55(3):594–605.PubMedGoogle Scholar
  4. 4.
    Patel IJ, Pirasteh A, Passalacqua MA, Robbin MR, Hsu DP, Buethe J, et al. Palliative procedures for the interventional oncologist. AJR Am J Roentgenol. 2013;201(4):726–35.PubMedGoogle Scholar
  5. 5.
    Bhaskar AK. Interventional management of cancer pain. Curr Opin Support Palliat Care. 2012;6(1):1–9.PubMedGoogle Scholar
  6. 6.
    McCullough HK, Bain RM, Clark HP, Requarth JA. The radiologist as a palliative care subspecialist: providing symptom relief when cure is not possible. AJR Am J Roentgenol. 2011;196(2):462–7.PubMedGoogle Scholar
  7. 7.
    Foster RC, Stavas JM. Bone and soft tissue ablation. Semin Interv Radiol. 2014;31(2):167–79.Google Scholar
  8. 8.
    Thacker PG, Callstrom MR, Curry TB, Mandrekar JN, Atwell TD, Goetz MP, et al. Palliation of painful metastatic disease involving bone with imaging-guided treatment: comparison of patients’ immediate response to radiofrequency ablation and cryoablation. AJR Am J Roentgenol. 2011;197(2):510–5.PubMedGoogle Scholar
  9. 9.
    Requarth J. Image-guided palliative care procedures. Surg Clin North Am. 2011;91(2):367–402. i35PubMedGoogle Scholar
  10. 10.
    Dupuy DE, Liu D, Hartfeil D, Hanna L, Blume JD, Ahrar K, et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer. 2010;116(4):989–97.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bang HJ, Littrup PJ, Currier BP, Goodrich DJ, Aoun HD, Klein LC, et al. Percutaneous cryoablation of metastatic lesions from non-small-cell lung carcinoma: initial survival, local control, and cost observations. J Vasc Interv Radiol. 2012;23(6):761–9.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nazario J, Hernandez J, Tam AL. Thermal ablation of painful bone metastases. Tech Vasc Interv Radiol. 2011;14(3):150–9.PubMedGoogle Scholar
  13. 13.
    Dupuy DE, Hong R, Oliver B, Goldberg SN. Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal. AJR Am J Roentgenol. 2000;175(5):1263–6.PubMedGoogle Scholar
  14. 14.
    Nahum Goldberg S, Dupuy DE. Image-guided radiofrequency tumor ablation: challenges and opportunities--part I. J Vasc Interv Radiol. 2001;12(9):1021–32.PubMedGoogle Scholar
  15. 15.
    Simon CJ, Dupuy DE. Percutaneous minimally invasive therapies in the treatment of bone tumors: thermal ablation. Semin Musculoskelet Radiol. 2006;10(2):137–44.PubMedGoogle Scholar
  16. 16.
    Dupuy DE, Goldberg SN. Image-guided radiofrequency tumor ablation: challenges and opportunities--part II. J Vasc Interv Radiol. 2001;12(10):1135–48.PubMedGoogle Scholar
  17. 17.
    Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg. 1998;227(4):559–65.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Goldberg SN, Hahn PF, Tanabe KK, Mueller PR, Schima W, Athanasoulis CA, et al. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol. 1998;9(1 Pt 1):101–11.PubMedGoogle Scholar
  19. 19.
    Lu DS, Raman SS, Vodopich DJ, Wang M, Sayre J, Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect. AJR Am J Roentgenol. 2002;178(1):47–51.PubMedGoogle Scholar
  20. 20.
    Rhim H, Goldberg SN, Dodd GD 3rd, Solbiati L, Lim HK, Tonolini M, et al. Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics. 2001;21 Spec No:S17–35; discussion S6–9.PubMedGoogle Scholar
  21. 21.
    Goldberg SN, Solbiati L, Halpern EF, Gazelle GS. Variables affecting proper system grounding for radiofrequency ablation in an animal model. J Vasc Interv Radiol. 2000;11(8):1069–75.PubMedGoogle Scholar
  22. 22.
    Woertler K, Vestring T, Boettner F, Winkelmann W, Heindel W, Lindner N. Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol. 2001;12(6):717–22.PubMedGoogle Scholar
  23. 23.
    Thanos L, Mylona S, Kalioras V, Pomoni M, Batakis N. Palliation of painful perineal metastasis treated with radiofrequency thermal ablation. Cardiovasc Intervent Radiol. 2005;28(3):381–3.PubMedGoogle Scholar
  24. 24.
    Sanou R, Bazin C, Krakowski I, Boccaccini H, Mathias J, Beot S, et al. Radiofrequency ablation for palliation of soft tissue tumor pain. J Radiol. 2010;91(3 Pt 1):281–6.PubMedGoogle Scholar
  25. 25.
    Rosenthal DI, Alexander A, Rosenberg AE, Springfield D. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology. 1992;183(1):29–35.PubMedGoogle Scholar
  26. 26.
    Goetz MP, Callstrom MR, Charboneau JW, Farrell MA, Maus TP, Welch TJ, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(2):300–6.Google Scholar
  27. 27.
    Guenette JP, Lopez MJ, Kim E, Dupuy DE. Solitary painful osseous metastases: correlation of imaging features with pain palliation after radiofrequency ablation—a multicenter American college of Radiology Imaging Network study. Radiology. 2013;268(3):907–15.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Callstrom MR, Charboneau JW, Goetz MP, Rubin J, Wong GY, Sloan JA, et al. Painful metastases involving bone: feasibility of percutaneous CT- and US-guided radio-frequency ablation. Radiology. 2002;224(1):87–97.PubMedGoogle Scholar
  29. 29.
    Thanos L, Mylona S, Galani P, Tzavoulis D, Kalioras V, Tanteles S, et al. Radiofrequency ablation of osseous metastases for the palliation of pain. Skelet Radiol. 2008;37(3):189–94.Google Scholar
  30. 30.
    Carrafiello G, Lagana D, Pellegrino C, Fontana F, Mangini M, Nicotera P, et al. Percutaneous imaging-guided ablation therapies in the treatment of symptomatic bone metastases: preliminary experience. Radiol Med. 2009;114(4):608–25.PubMedGoogle Scholar
  31. 31.
    Clarencon F, Jean B, Pham HP, Cormier E, Bensimon G, Rose M, et al. Value of percutaneous radiofrequency ablation with or without percutaneous vertebroplasty for pain relief and functional recovery in painful bone metastases. Skelet Radiol. 2013;42(1):25–36.Google Scholar
  32. 32.
    Pusceddu C, Sotgia B, Fele RM, Melis L. Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol. 2013;24(2):229–35.PubMedGoogle Scholar
  33. 33.
    Kastler A, Alnassan H, Pereira PL, Alemann G, Barbe DA, Aubry S, et al. Analgesic effects of microwave ablation of bone and soft tissue tumors under local anesthesia. Pain Med (Malden Mass). 2013;14(12):1873–81.Google Scholar
  34. 34.
    Callstrom MR, Atwell TD, Charboneau JW, Farrell MA, Goetz MP, Rubin J, et al. Painful metastases involving bone: percutaneous image-guided cryoablation—prospective trial interim analysis. Radiology. 2006;241(2):572–80.PubMedGoogle Scholar
  35. 35.
    Masala S, Schillaci O, Bartolucci AD, Calabria F, Mammucari M, Simonetti G. Metabolic and clinical assessment of efficacy of cryoablation therapy on skeletal masses by 18F-FDG positron emission tomography/computed tomography (PET/CT) and visual analogue scale (VAS): initial experience. Skelet Radiol. 2011;40(2):159–65.Google Scholar
  36. 36.
    Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119(5):1033–41.PubMedGoogle Scholar
  37. 37.
    Prologo JD, Passalacqua M, Patel I, Bohnert N, Corn DJ. Image-guided cryoablation for the treatment of painful musculoskeletal metastatic disease: a single-center experience. Skelet Radiol. 2014;43(11):1551–9.Google Scholar
  38. 38.
    Gangi A, Kastler B, Klinkert A, Dietemann JL. Injection of alcohol into bone metastases under CT guidance. J Comput Assist Tomogr. 1994;18(6):932–5.PubMedGoogle Scholar
  39. 39.
    Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, et al. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases--preliminary clinical experience. Ann Oncol. 2007;18(1):163–7.PubMedGoogle Scholar
  40. 40.
    Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6.PubMedGoogle Scholar
  41. 41.
    Napoli A, Anzidei M, Marincola BC, Brachetti G, Noce V, Boni F, et al. MR imaging-guided focused ultrasound for treatment of bone metastasis. Radiographics. 2013;33(6):1555–68.PubMedGoogle Scholar
  42. 42.
    Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25(Suppl 1):S69–83.PubMedGoogle Scholar
  43. 43.
    Skinner MG, Iizuka MN, Kolios MC, Sherar MD. A theoretical comparison of energy sources—microwave, ultrasound and laser—for interstitial thermal therapy. Phys Med Biol. 1998;43(12):3535–47.PubMedGoogle Scholar
  44. 44.
    Yu J, Liang P, Yu X, Liu F, Chen L, Wang Y. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers. Eur J Radiol. 2011;79(1):124–30.PubMedGoogle Scholar
  45. 45.
    Izzo F. Other thermal ablation techniques: microwave and interstitial laser ablation of liver tumors. Ann Surg Oncol. 2003;10(5):491–7.PubMedGoogle Scholar
  46. 46.
    Wright AS, Lee FT Jr, Mahvi DM. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol. 2003;10(3):275–83.PubMedGoogle Scholar
  47. 47.
    Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee FT Jr. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236(1):132–9.PubMedGoogle Scholar
  48. 48.
    Brace CL. Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng. 2010;38(1):65–78.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology. 2002;60(2 Suppl 1):40–9.PubMedGoogle Scholar
  50. 50.
    Rubinsky B. Cryosurgery. Annu Rev Biomed Eng. 2000;2:157–87.PubMedGoogle Scholar
  51. 51.
    Rubinsky B, Lee CY, Bastacky J, Onik G. The process of freezing and the mechanism of damage during hepatic cryosurgery. Cryobiology. 1990;27(1):85–97.PubMedGoogle Scholar
  52. 52.
    Silverman SG, Tuncali K, Adams DF, Nawfel RD, Zou KH, Judy PF. CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation exposure. Radiology. 1999;212(3):673–81.PubMedGoogle Scholar
  53. 53.
    Tacke J, Speetzen R, Heschel I, Hunter DW, Rau G, Gunther RW. Imaging of interstitial cryotherapy--an in vitro comparison of ultrasound, computed tomography, and magnetic resonance imaging. Cryobiology. 1999;38(3):250–9.PubMedGoogle Scholar
  54. 54.
    Weber SM, Lee FT Jr, Warner TF, Chosy SG, Mahvi DM. Hepatic cryoablation: US monitoring of extent of necrosis in normal pig liver. Radiology. 1998;207(1):73–7.PubMedGoogle Scholar
  55. 55.
    Farrell MA, Charboneau JW, Callstrom MR, Reading CC, Engen DE, Blute ML. Paranephric water instillation: a technique to prevent bowel injury during percutaneous renal radiofrequency ablation. AJR Am J Roentgenol. 2003;181(5):1315–7.PubMedGoogle Scholar
  56. 56.
    Rosenthal D, Callstrom MR. Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology. 2012;262(3):765–80.PubMedGoogle Scholar
  57. 57.
    Yarmohammadi H, Nakamoto DA, Azar N, Hayek SM, Haaga JR. Percutaneous computed tomography guided cryoablation of the celiac plexus as an alternative treatment for intractable pain caused by pancreatic cancer. J Cancer Res Ther. 2011;7(4):481–3.PubMedGoogle Scholar
  58. 58.
    Fanucci E, Manenti G, Ursone A, Fusco N, Mylonakou I, D’Urso S, et al. Role of interventional radiology in pudendal neuralgia: a description of techniques and review of the literature. Radiol Med. 2009;114(3):425–36.PubMedGoogle Scholar
  59. 59.
    Xiao YY, Tian JL, Li JK, Yang L, Zhang JS. CT-guided percutaneous chemical ablation of adrenal neoplasms. AJR Am J Roentgenol. 2008;190(1):105–10.PubMedGoogle Scholar
  60. 60.
    Fry WJ, Barnard JW, Fry FJ, Brennan JF. Ultrasonically produced localized selective lesions in the central nervous system. Am J Phys Med. 1955;34(3):413–23.PubMedGoogle Scholar
  61. 61.
    Stewart EA, Rabinovici J, Tempany CM, Inbar Y, Regan L, Gostout B, et al. Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil Steril. 2006;85(1):22–9.PubMedGoogle Scholar
  62. 62.
    Gianfelice D, Khiat A, Boulanger Y, Amara M, Belblidia A. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol. 2003;14(10):1275–82.PubMedGoogle Scholar
  63. 63.
    Chen W, Zhu H, Zhang L, Li K, Su H, Jin C, et al. Primary bone malignancy: effective treatment with high-intensity focused ultrasound ablation. Radiology. 2010;255(3):967–78.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations