Thoracic Cancer Pain

  • Joseph C. Hung
  • Rajiv Shah
  • Amitabh Gulati


Malignant pain from within the thoracic cavity may originate from primary or metastatic neoplasms involving the lungs, heart, esophagus, and neural structures such as the brachial plexus and intercostal nerves, osseous structures, or lymph nodes. Systemic analgesic therapy including opioids has the potential to provide significant pain relief in this population. However, some patients may fail to achieve meaningful pain relief or suffer from unbearable medication- related adverse side effects. In this subset of patients, interventional pain management techniques targeting the intercostal nerves, thoracic nerve roots, and/or neuroaxis can offer additional palliation when more conventional methods of pain control have failed.


Lung neoplasms Metastasis Cancer pain Pain management Palliative care 


  1. 1.
    Islami F, Torre LA, Jemal A. Global trends of lung cancer mortality and smoking prevalence. Transl Lung Cancer Res. 2015;4(4):327–38.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Fact Sheets by Cancer [Internet]. Available from:
  3. 3.
  4. 4.
    Al-Tariq QZ. Percutaneous strategies for the management of pulmonary parenchymal, chest wall, and pleural metastases. AJR Am J Roentgenol. 2014;203(4):709–16.PubMedGoogle Scholar
  5. 5.
    Mercadante S, Vitrano V. Pain in patients with lung cancer: pathophysiology and treatment. Lung Cancer. 2010;68(1):10–5.PubMedGoogle Scholar
  6. 6.
    Gough N, Miah AB, Linch M. Nonsurgical oncological management of cancer pain. Curr Opin Support Palliat Care. 2014;8(2):102–11.PubMedGoogle Scholar
  7. 7.
    Teunissen SCCM, Wesker W, Kruitwagen C, de Haes HCJM, Voest EE, de Graeff A. Symptom prevalence in patients with incurable cancer: a systematic review. J Pain Symptom Manag. 2007;34(1):94–104.Google Scholar
  8. 8.
    Marangoni C, Lacerenza M, Formaglio F, Smirne S, Marchettini P. Sensory disorder of the chest as presenting symptom of lung cancer. J Neurol Neurosurg Psychiatry. 1993;56(9):1033–4.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Marino C, Zoppi M, Morelli F, Buoncristiano U, Pagni E. Pain in early cancer of the lungs. Pain. 1986;27(1):57–62.PubMedGoogle Scholar
  10. 10.
    Fishman S, Ballantyne J, Rathmell JP, Bonica JJ, editors. Bonica’s management of pain. 4th ed. Baltimore: Lippincott, Williams & Wilkins; 2010.Google Scholar
  11. 11.
    Yin L, He D, Shen H, et al. Surgical treatment of cardiac tumors: a 5-year experience from a single cardiac center. J Thorac Dis. 2016;8(5):911–9.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bruera E, Portenoy RK, editors. Cancer pain: assessment and management. 2nd ed. Cambridge/New York: Cambridge University Press; 2010.Google Scholar
  13. 13.
    Hsu P-K, Hsu H-S, Lee H-C, et al. Management of primary chest wall tumors: 14 years’ clinical experience. J Chin Med Assoc. 2006;69(8):377–82.PubMedGoogle Scholar
  14. 14.
    Rice ASC, editor. Clinical pain management. 2nd ed. London: Hodder Arnold; 2008.Google Scholar
  15. 15.
    Rusch VW. Management of Pancoast tumours. Lancet Oncol. 2006;7(12):997–1005.PubMedGoogle Scholar
  16. 16.
    Marulli G, Battistella L, Mammana M, Calabrese F, Rea F. Superior sulcus tumors (Pancoast tumors). Ann Translat Med. 2016;4(12):239.Google Scholar
  17. 17.
    Wilson LD, Detterbeck FC, Yahalom J. Clinical practice. Superior vena cava syndrome with malignant causes. N Engl J Med. 2007;356(18):1862–9.PubMedGoogle Scholar
  18. 18.
    Bone Metastasis: Which Cancers Cause It? [Internet]. Available from:
  19. 19.
    D’Antonio C, Passaro A, Gori B, et al. Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Ther Adv Med Oncol. 2014;6(3):101–14.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Falk S, Dickenson AH. Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol. 2014;32(16):1647–54.PubMedGoogle Scholar
  21. 21.
    Sun L, Yu S. Efficacy and safety of denosumab versus zoledronic acid in patients with bone metastases: a systematic review and meta-analysis. Am J Clin Oncol. 2013;36(4):399–403.PubMedGoogle Scholar
  22. 22.
    Patrick DL, Cleeland CS, von Moos R, et al. Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents. Support Care Cancer. 2015;23(4):1157–68.PubMedGoogle Scholar
  23. 23.
    Health Quality Ontario. Vertebral augmentation involving vertebroplasty or kyphoplasty for cancer-related vertebral compression fractures: a systematic review. Ont Health Technol Assess Ser. 2016;16(11):1–202.PubMedCentralGoogle Scholar
  24. 24.
    Greenberg HS, Deck MD, Vikram B, Chu FC, Posner JB. Metastasis to the base of the skull: clinical findings in 43 patients. Neurology. 1981;31(5):530–7.PubMedGoogle Scholar
  25. 25.
    Storstein A, Vedeler CA. Paraneoplastic neurological syndromes and onconeural antibodies: clinical and immunological aspects. Adv Clin Chem. 2007;44:143–85.PubMedGoogle Scholar
  26. 26.
    Brady AM. Management of painful paraneoplastic syndromes. Hematol Oncol Clin North Am. 1996;10(4):801–9.PubMedGoogle Scholar
  27. 27.
    Trejo-Gabriel-Galan JM, Macarron-Vicente JL, Lázaro L, Rodriguez-Pascual L, Calvo I. Intercostal neuropathy and pain due to pleuritis. Pain Med. 2013;14(5):769–70.PubMedGoogle Scholar
  28. 28.
    Peláez R, Pascual G, Aguilar JL, Atanassoff PG. Paravertebral cervical nerve block in a patient suffering from a Pancoast tumor. Pain Med. 2010;11(12):1799–802.PubMedGoogle Scholar
  29. 29.
    Gofeld M, Bhatia A. Alleviation of Pancoast’s tumor pain by ultrasound-guided percutaneous ablation of cervical nerve roots. Pain Pract. 2008;8(4):314–9.PubMedGoogle Scholar
  30. 30.
    Trescot, MD, ABIPP, FIPP, Andrea M, editor. Peripheral nerve entrapments [Internet]. Cham: Springer International Publishing; 2016 [cited 2016 Nov 20]. Available from: Scholar
  31. 31.
    Simopoulos TT, Nagda J, Aner MM. Percutaneous radiofrequency lesioning of the suprascapular nerve for the management of chronic shoulder pain: a case series. J Pain Res. 2012;5:91–7.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Bindoff LA, Heseltine D. Unilateral facial pain in patients with lung cancer: a referred pain via the vagus? Lancet. 1988;1(8589):812–5.PubMedGoogle Scholar
  33. 33.
    Barnett GC, West CML, Dunning AM, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer. 2009;9(2):134–42.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Maesschalck TD, Dulguerov N, Caparrotti F, et al. Comparison of the incidence of osteoradionecrosis with conventional radiotherapy and intensity-modulated radiotherapy. Head Neck. 2016;38(11):1695–702.PubMedGoogle Scholar
  35. 35.
    Drugs Approved for Lung Cancer – National Cancer Institute [Internet]. Available from:
  36. 36.
    Meijuan Y, Zhiyou P, Yuwen T, Ying F, Xinzhong C. A retrospective study of postmastectomy pain syndrome: incidence, characteristics, risk factors, and influence on quality of life. Sci World J. 2013;2013:1–6.Google Scholar
  37. 37.
    Karmakar MK, Ho AMH. Postthoracotomy pain syndrome. Thorac Surg Clin. 2004;14(3):345–52.PubMedGoogle Scholar
  38. 38.
    Hopkins KG, Hoffman LA, Dabbs ADV, et al. Postthoracotomy pain syndrome following surgery for lung cancer: symptoms and impact on quality of life. J Adv Pract Oncol. 2015;6(2):121–32.PubMedPubMedCentralGoogle Scholar
  39. 39.
    McGreevy K, Bottros MM, Raja SN. Preventing chronic pain following acute pain: risk factors, preventive strategies, and their efficacy. Eur J Pain Suppl. 2011;5(2):365–72.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nagahiro I, Andou A, Aoe M, Sano Y, Date H, Shimizu N. Pulmonary function, postoperative pain, and serum cytokine level after lobectomy: a comparison of VATS and conventional procedure. Ann Thorac Surg. 2001;72(2):362–5.PubMedGoogle Scholar
  41. 41.
    Sentürk M, Ozcan PE, Talu GK, et al. The effects of three different analgesia techniques on long-term postthoracotomy pain. Anesth Analg. 2002;94(1):11–5, table of contents.PubMedGoogle Scholar
  42. 42.
    Gulati A, Shah R, Puttanniah V, Hung JC, Malhotra V. A retrospective review and treatment paradigm of interventional therapies for patients suffering from intractable thoracic chest wall pain in the oncologic population. Pain Med. 2015;16(4):802–10.PubMedGoogle Scholar
  43. 43.
    Waldman SD. Atlas of interventional pain management. 3rd ed. Philadelphia: Saunders/Elsevier; 2009.Google Scholar
  44. 44.
    Snell RS. Clinical anatomy by regions. Baltimore: Lippincott Williams & Wilkins; 2012.Google Scholar
  45. 45.
    Karmakar MK, Kwok WH, Kew J. Thoracic paravertebral block: radiological evidence of contralateral spread anterior to the vertebral bodies. Br J Anaesth. 2000;84(2):263–5.PubMedGoogle Scholar
  46. 46.
    Blanco R, Parras T, McDonnell JG, Prats-Galino A. Serratus plane block: a novel ultrasound-guided thoracic wall nerve block. Anaesthesia. 2013;68(11):1107–13.PubMedGoogle Scholar
  47. 47.
    Zocca JA, Chen GH, Puttanniah VG, Hung JC, Gulati A. Ultrasound-guided serratus plane block for treatment of postmastectomy pain syndromes in breast cancer patients: a case series. Pain Pract. 2017;17(1):141–6.PubMedGoogle Scholar
  48. 48.
    Grider JS, Mullet TW, Saha SP, Harned ME, Sloan PA. A randomized, double-blind trial comparing continuous thoracic epidural bupivacaine with and without opioid in contrast to a continuous paravertebral infusion of bupivacaine for post-thoracotomy pain. J Cardiothorac Vasc Anesth. 2012;26(1):83–9.PubMedGoogle Scholar
  49. 49.
    Tighe S, Greene MD, Rajadurai N. Paravertebral block. Contin Educ Anaesth Crit Care Pain. 2010;10(5):133–7.Google Scholar
  50. 50.
    Daly DJ, Myles PS. Update on the role of paravertebral blocks for thoracic surgery: are they worth it? Curr Opin Anaesthesiol. 2009;22(1):38–43.PubMedGoogle Scholar
  51. 51.
    Krediet AC, Moayeri N, van Geffen G-J, et al. Different approaches to ultrasound-guided thoracic paravertebral block: an illustrated review. Anesthesiology. 2015;123(2):459–74.PubMedGoogle Scholar
  52. 52.
    Connelly NR, Malik A, Madabushi L, Gibson C. Use of ultrasound-guided cryotherapy for the management of chronic pain states. J Clin Anesth. 2013;25(8):634–6.PubMedGoogle Scholar
  53. 53.
    Byas-Smith MG, Gulati A. Ultrasound-guided intercostal nerve cryoablation. Anesth Analg. 2006;103(4):1033–5.PubMedGoogle Scholar
  54. 54.
    Bogduk N. Pulsed radiofrequency. Pain Med. 2006;7(5):396–407.PubMedGoogle Scholar
  55. 55.
    Lord SM, Bogduk N. Radiofrequency procedures in chronic pain. Best Pract Res Clin Anaesthesiol. 2002;16(4):597–617.PubMedGoogle Scholar
  56. 56.
    Racz GB, Ruiz-Lopez R. Radiofrequency procedures. Pain Pract. 2006;6(1):46–50.PubMedGoogle Scholar
  57. 57.
    Cohen SP, Sireci A, Wu CL, Larkin TM, Williams KA, Hurley RW. Pulsed radiofrequency of the dorsal root ganglia is superior to pharmacotherapy or pulsed radiofrequency of the intercostal nerves in the treatment of chronic postsurgical thoracic pain. Pain Physician. 2006;9(3):227–35.PubMedGoogle Scholar
  58. 58.
    Facchini G, Spinnato P, Guglielmi G, Albisinni U, Bazzocchi A. A comprehensive review of pulsed radiofrequency in the treatment of pain associated with different spinal conditions. Br J Radiol. 2017;90:20150406.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Detterbeck FC. Efficacy of methods of intercostal nerve blockade for pain relief after thoracotomy. Ann Thorac Surg. 2005;80(4):1550–9.PubMedGoogle Scholar
  60. 60.
    Engel AJ. Utility of intercostal nerve conventional thermal radiofrequency ablations in the injured worker after blunt trauma. Pain Physician. 2012;15(5):E711–8.PubMedGoogle Scholar
  61. 61.
    van Kleef M, Barendse GA, Dingemans WA, et al. Effects of producing a radiofrequency lesion adjacent to the dorsal root ganglion in patients with thoracic segmental pain. Clin J Pain. 1995;11(4):325–32.PubMedGoogle Scholar
  62. 62.
    Malik T. Ultrasound-guided paravertebral neurolytic block: a report of two cases. Pain Pract. 2014;14(4):346–9.PubMedGoogle Scholar
  63. 63.
    Gollapalli L, Muppuri R. Paraplegia after intercostal neurolysis with phenol. J Pain Res. 2014;7:665–8.PubMedPubMedCentralGoogle Scholar
  64. 64.
    McCartney CJL, Chambers WA. Central neuraxial techniques for cancer pain. Curr Anaesth Crit Care. 2000;11(3):166–72.Google Scholar
  65. 65.
    Smith TJ, Staats PS, Deer T, et al. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: impact on pain, drug-related toxicity, and survival. J Clin Oncol. 2002;20(19):4040–9.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Brogan S, Junkins S. Interventional therapies for the management of cancer pain. J Support Oncol. 2010;8(2):52–9.PubMedGoogle Scholar
  67. 67.
    Mercadante S, Intravaia G, Villari P, et al. Intrathecal treatment in cancer patients unresponsive to multiple trials of systemic opioids. Clin J Pain. 2007;23(9):793–8.PubMedGoogle Scholar
  68. 68.
    Flagg A, McGreevy K, Williams K. Spinal cord stimulation in the treatment of cancer-related pain: “back to the origins”. Curr Pain Headache Rep. 2012;16(4):343–9.PubMedGoogle Scholar
  69. 69.
    Yakovlev AE, Resch BE. Spinal cord stimulation for cancer-related low back pain. Am J Hosp Palliat Care. 2012;29(2):93–7.PubMedGoogle Scholar
  70. 70.
    Peng L, Min S, Zejun Z, Wei K, Bennett MI. Spinal cord stimulation for cancer-related pain in adults. Cochrane Database Syst Rev. 2015;6:CD009389.Google Scholar
  71. 71.
    Ballantyne JC, Carwood CM. Comparative efficacy of epidural, subarachnoid, and intracerebroventricular opioids in patients with pain due to cancer. Cochrane Database Syst Rev. 2005;1:CD005178.Google Scholar
  72. 72.
    Mercadante S. Neuraxial techniques for cancer pain: an opinion about unresolved therapeutic dilemmas. Reg Anesth Pain Med. 1999;24(1):74–83.PubMedGoogle Scholar
  73. 73.
    Farquhar-Smith P, Chapman S. Neuraxial (epidural and intrathecal) opioids for intractable pain. Br J Pain. 2012;6(1):25–35.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Greene NM. Distribution of local anesthetic solutions within the subarachnoid space. Anesth Analg. 1985;64(7):715–30.PubMedGoogle Scholar
  75. 75.
    Kroin JS, Ali A, York M, Penn RD. The distribution of medication along the spinal canal after chronic intrathecal administration. Neurosurgery. 1993;33(2):226–30; discussion 230.PubMedGoogle Scholar
  76. 76.
    NYSORA – The New York School of Regional Anesthesia – Spinal Anesthesia [Internet]. Available from:
  77. 77.
    Drake RL, Vogl W, Mitchell AWM, Gray H. Gray’s anatomy for students. 3rd ed. Philadelphia: Churchill Livingstone/Elsevier; 2015.Google Scholar
  78. 78.
    Gosling JA. Human anatomy: color atlas and textbook. London: Mosby; 2008.Google Scholar
  79. 79.
    Atkin N, Jackson KA, Danks RA. Bilateral open thoracic cordotomy for refractory cancer pain: a neglected technique? J Pain Symptom Manag. 2010;39(5):924–9.Google Scholar
  80. 80.
    Kanpolat Y. The surgical treatment of chronic pain: destructive therapies in the spinal cord. Neurosurg Clin N Am. 2004;15(3):307–17.PubMedGoogle Scholar
  81. 81.
    Crul BJP, Blok LM, van Egmond J, van Dongen RTM. The present role of percutaneous cervical cordotomy for the treatment of cancer pain. J Headache Pain. 2005;6(1):24–9.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Raslan AM. Percutaneous computed tomography-guided radiofrequency ablation of upper spinal cord pain pathways for cancer-related pain. Neurosurgery. 2008;62(3 Suppl 1):226–33; discussion 233–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joseph C. Hung
    • 1
  • Rajiv Shah
    • 2
  • Amitabh Gulati
    • 3
  1. 1.Memorial Sloan Kettering Cancer CenterAnesthesiology and Critical Care MedicineNew YorkUSA
  2. 2.Washington University School of MedicineSaint LouisUSA
  3. 3.Department of Anesthesiology and Critical CareMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations