Tolerance to Metals in Two Species of Fabaceae Grown in Riverbank Sediments Polluted with Chromium, Copper, and Lead

  • Gabriel Basílico
  • Ana Faggi
  • Laura de Cabo


Matanza-Riachuelo river is the most polluted river in Argentina and one of the most pollute drivers in the world. Among the pollutants in the riverbank sediments, metals can be found in toxic concentrations to biota. During 2015, a pilot-scale rehabilitation was carried out in a selected section of the riverbank located in the lower basin of the river, which consisted of the reintroduction of several native plant species, including Erythrina crista-galli and Senna corymbosa (Fabaceae). In order to evaluate the tolerance of these species to polluted sediments and quantify the bioaccumulation of Cr, Cu, and Pb in aerial tissues and roots, a 153-day trial was carried out using seedlings of both species cultivated from seeds. It was found that both species showed good growth in riverbank sediments polluted with metals. None of the species has accumulated significant amounts of Cr, Cu, or Pb, and the translocation of Pb from the roots to the aerial tissues has been observed only in the case of E. crista-galli after 5 months of planting. However, the concentration of this metal in the aerial biomass was low. Individuals of both species planted in the riverbank showed tolerance not only to the contaminants present in the sediments but also to the environmental stress of the riverbank.


Ecological rehabilitation Riverbanks Matanza-Riachuelo river Erythrina crista-galli Senna corymbosa 



Absolute growth rate


Bioconcentration factor


Contamination factor


Days after planting


Degree of contamination


Relative growth rate


Superoxide dismutase enzyme


Translocation factor



The research was supported by grants of the Universidad de Flores and Museo Argentino de Ciencias Naturales “Bernardino Rivadavia. The authors want to thank the Gerencia Operativa de Riachuelo y Borde Costero Sur – Agencia de Protección Ambiental (Ciudad Autónoma de Buenos Aires) that provided assistance during the surveys. The authors are grateful for the revision of the text in English made by Maria Victoria Casares and Luciana Marin.


  1. 1.
    Tudino M, Bonetto C, Conforti V, de Cabo L, Fabrizio de Iorio A, Ferrari L et al (2001) La contaminación del agua. In: Borthagaray AI et al (eds) Diagnóstico Ambiental del Área Metropolitana de Buenos Aires. FADU-UBA, Buenos AiresGoogle Scholar
  2. 2.
    Bargiela M, deIorio A (2013) La calidad del agua del río Matanza-Riachuelo. Informe Especial: El Saneamiento del Riachuelo 132:12–15Google Scholar
  3. 3.
    Perveen R, Faizan S, Ansari AA (2015) Phytoremediation using leguminous plants: managing cadmium stress with applications of arbuscular mycorrhiza (AM) fungi. In: Ansari AA et al (eds) Phytoremediation, vol 2. Springer International Publishing, Cham, pp 131–142Google Scholar
  4. 4.
    Ambrosini VG, Rosa DJ, Prado JPC, Borghezan M, de Melo GWB, de Sousa Soares RF et al (2015) Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiol Bioch 96:270–280CrossRefGoogle Scholar
  5. 5.
    Breuste J, Matanza-Riachuelo FAL c (2014) Una mirada ambiental para recuperar sus riberas. Universidad de Flores, Buenos AiresGoogle Scholar
  6. 6.
    Basílico G, de Cabo L, Faggi A, Miguel S (2016) Low-tech alternatives for the rehabilitation of aquatic and riparian environments. In: Ansari AA et al (eds) Phytormediation, vol 4. Springer International Publishing, Cham, pp 349–364Google Scholar
  7. 7.
    Becerril JM, Barrutia O, Plazaola JG, Hernández A, Olano JM, Garbisu C (2007) Especies nativas de suelos contaminados por metales: aspectos ecofisiológicos y su uso en fitorremediación. Rev Ecosist 16(2):50–55Google Scholar
  8. 8.
    Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881CrossRefGoogle Scholar
  9. 9.
    Hunt R (2003) Growth analysis, individual plants. Encyclopaedia of applied plant sciences. Academic, London, pp 579–588CrossRefGoogle Scholar
  10. 10.
    Davies BE (1974) Loss-on ignition as an estimate of soil organic matter. Soil Sci Soc Am Proc 38(1):150–151CrossRefGoogle Scholar
  11. 11.
    Schulte EE, Hopkins BG (1996) Estimation of organic matter by weight loss-on-ignition. In: Magdoff FR et al (eds) Soil organic matter: analysis and interpretation. SSSA special publication 46. SSSA, Madison, pp 21–31Google Scholar
  12. 12.
    Eyherabide M, Saínz Rozas H, Barbieri P, Echeverría HE (2014) Comparación de métodos para determinar carbono orgánico en suelo. Cienc Suelo 32(1):13–19Google Scholar
  13. 13.
    Mendoza RE, García IV, de Cabo L, Weigandt CF, de Iorio AF (2015) The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Sci Tot Environ 505:555–564CrossRefGoogle Scholar
  14. 14.
    Kwon YT, Lee CW (1998) Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area. Sci Tot Environ 214(1):203–210CrossRefGoogle Scholar
  15. 15.
    Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 318(1–2):285–298CrossRefGoogle Scholar
  16. 16.
    Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Tot Environ 368(2–3):456–464CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gabriel Basílico
    • 1
  • Ana Faggi
    • 1
    • 2
  • Laura de Cabo
    • 2
  1. 1.Laboratorio de Bioindicadores y RemediaciónUniversidad de FloresCiudad Autónoma de Buenos AiresArgentina
  2. 2.Museo Argentino de Ciencias Naturales – Consejo Nacional de Investigaciones Científicas y TécnicasCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations