A Survey on the Metal(loid) Accumulation Ability of Spontaneous and Established Plants for the Phytomanagement of an Industrial Landfill in the Venice Lagoon

  • Fabrizio Pietrini
  • Valentina Iori
  • Lucia Pietrosanti
  • Laura Passatore
  • Maria Clara Zuin
  • Rita Aromolo
  • Guido Capotorti
  • Angelo Massacci
  • Massimo ZacchiniEmail author


The variability of plant species growing in polluted site for metal(loid) accumulation is a key factor to be investigated for the environmental relevance of the contamination at biological scale and for phytomanagement strategies. Thus, a survey on the metal(loid) accumulation in the aboveground organs of spontaneous and established plants was conducted in an industrial landfill on an island in the Venice Lagoon (Italy). For this purpose, a characterization of the metal pollution in the soil profile and in the groundwater was first performed in an experimental plot, revealing a remarkable spot contamination by As, Cd, Zn, and, to a lesser extent, Pb, in many cases with values higher than allowed by Italian Guideline Values (D.Lgs 152/06). Then, the aboveground plant organs of 12 plant species, recognized as the most representative tree, shrub, and herbaceous species growing on the island, were sampled for metal(loid) content analysis at the end of the annual vegetation cycle. All spontaneous species showed a higher ability to exclude rather than accumulate heavy metals compared to established species, except for Amaranthus retroflexus and Blackstonia perfoliata toward Zn and As, respectively. Contrarily, in the established species, a relatively high heavy metal concentration in aboveground organs was detected. Specifically, a high Pb soil-plant transfer was evidenced in Chrysopogon zizanioides and Cd and Zn in both Salix species by calculating the bioconcentration factor (BCF). PCA allowed to confirm the different behaviors of the plant species regarding their tolerance, giving indications for phytomanagement of metal-contaminated sites.


Bioconcentration factor Groundwater pollution Heavy metals Industrial waste Phytoremediation Soil pollution 



This work was funded by Eni S.p.A. (contract no. 4900157051 “Experimental activity on phytostabilisation and phytoextraction of heavy metals”). Authors wish to thank Mr. Giuseppe Santarelli and Mr. Giovanni De Simone for their valuable technical assistance.


  1. 1.
    Efroymson RA, Rebecca A, Joseph P et al (2004) A framework for net environmental benefit analysis for remediation or restoration of contaminated sites. Environ Manag 34:315–331CrossRefGoogle Scholar
  2. 2.
    Burges A, Epelde L, Blanco F et al (2017) Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Sci Total Environ 584:329–338CrossRefGoogle Scholar
  3. 3.
    Costanza R, d’Arge R, De Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  4. 4.
    Marmiroli M, Pietrini F, Maestri E et al (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31:1319–1334CrossRefGoogle Scholar
  5. 5.
    Dudka S, Miller WP (1999) Accumulation of potentially toxic elements in plants and their transfer to human food chain. J Environ Sci Health B 34:681–708CrossRefGoogle Scholar
  6. 6.
    Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediation 1:115–123CrossRefGoogle Scholar
  7. 7.
    Cundy AB, Bardos RP, Puschenreiter M et al (2016) Brownfields to green fields: realising wider benefits from practical contaminant phytomanagement strategies. J Environ Manag 184:67–77CrossRefGoogle Scholar
  8. 8.
    Epelde L, Becerril JM, Alkorta I, Garbisu C (2014) Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters. Int J Phytoremediation 16:971–981CrossRefGoogle Scholar
  9. 9.
    Domínguez MT, Maranón T, Murillo JM et al (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59CrossRefGoogle Scholar
  10. 10.
    Evangelou MW, Papazoglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer International Publishing, Switzerland, pp 115–132Google Scholar
  11. 11.
    Cundy AB, Bardos RP, Church A et al (2013) Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: the European context. J Environ Manag 129:283–291CrossRefGoogle Scholar
  12. 12.
    Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540CrossRefGoogle Scholar
  13. 13.
    Vamerali T, Bandiera M, Coletto L et al (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894CrossRefGoogle Scholar
  14. 14.
    Critto A, Agostini P (2009) Using multiple indices to evaluate scenarios for the remediation of contaminated land: the Porto Marghera (Venice, Italy) contaminated site. Environ Sci Pollut Res 16:649–662CrossRefGoogle Scholar
  15. 15.
    Zonta R, Botter M, Cassin D et al (2007) Sediment chemical contamination of a shallow water area close to the industrial zone of Porto Marghera (Venice Lagoon, Italy). Mar Pollut Bull 55:529–542CrossRefGoogle Scholar
  16. 16.
    Giusti L, Zhang H (2002) Heavy metals and arsenic in sediments, mussels and marine water from Murano (Venice, Italy). Environ Geochem Health 24:47–65CrossRefGoogle Scholar
  17. 17.
    Libralato G, Losso C, Arizzi Novelli A et al (2008) Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment. Environ Pollut 156:644–650CrossRefGoogle Scholar
  18. 18.
    Fontaine TA, Moore TD, Burgoa B (2000) Distributions of contaminant concentration and particle size in fluvial sediment. Water Res 34:3473–3477CrossRefGoogle Scholar
  19. 19.
    IGV, Italian Guideline Values, Lgs D. Italian Parliament (2006) Testo Unico Ambientale, Norme in materia ambientale, 152/06Google Scholar
  20. 20.
    Giandon P, Garlato A, Ragazzi F (2010) Valori di fondo di metalli e metalloidi nei suoli del veneto. Ars n. 127Google Scholar
  21. 21.
    Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FLGoogle Scholar
  22. 22.
    Alloway BJ (1990) Heavy metals in soil. Blakie and Son Ltd, LondonGoogle Scholar
  23. 23.
    Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefGoogle Scholar
  24. 24.
    Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  25. 25.
    Zacchini M, Pietrini F, Scarascia-Mugnozza G et al (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34CrossRefGoogle Scholar
  26. 26.
    Foulon J, Zappelini C, Durand A et al (2016) Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site. FEMS Microbiol Ecol 92:fiw163CrossRefGoogle Scholar
  27. 27.
    Friesl-Hanl W, Platzer K, Riesing J et al (2017) Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: success and long-term immobilising efficiency. J Environ Manag 186:167–174CrossRefGoogle Scholar
  28. 28.
    Bourceret A, Cébron A, Tisserant E et al (2016) The bacterial and fungal diversity of an aged PAH-and heavy metal-contaminated soil is affected by plant cover and edaphic parameters. Microb Ecol 71:711–724CrossRefGoogle Scholar
  29. 29.
    Wenzel W (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408CrossRefGoogle Scholar
  30. 30.
    Dongmei L, Changqun D (2008) Restoration potential of pioneer plants growing on lead-zinc mine tailing in Lanping, southwest China. J Environ Sci 20:1202–1209CrossRefGoogle Scholar
  31. 31.
    Parraga-Aguado I, Querejeta JI, González-Alcaraz MN et al (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees. J Environ Manag 133:51–58CrossRefGoogle Scholar
  32. 32.
    Bernardello M, Secco T, Pellizzato F, Chinellato M, Sfriso A, Pavoni B (2006) The changing state of contamination in the Lagoon of Venice. Part 2: Heavy metals. Chemosphere 64:1334–1345CrossRefGoogle Scholar
  33. 33.
    Mattiuzzo E, Bavero L, Zennaro F, Franco D (2007) Heavy metal behaviour in an experimental free water surface wetland in the Venice Lagoon watershed. Water Air Soil Pollut 183:143–151CrossRefGoogle Scholar
  34. 34.
    Zhao X, Dong D, Hua X, Dong S (2009) Investigation of the transport and fate of Pb, Cd, Cr(VI) and As (V) in soil zones derived from moderately contaminated farmland in Northeast, China. J Hazard Mater 170:570–577CrossRefGoogle Scholar
  35. 35.
    Garcia I, Diez M, Martin F, Simon M, Dorronsoro C (2009) Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil. Pedosphere 19:166–175CrossRefGoogle Scholar
  36. 36.
    Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media, New YorkGoogle Scholar
  37. 37.
    Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:35CrossRefGoogle Scholar
  38. 38.
    Del Río M, Font R, Almela C et al (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. J Biotechnol 98:125–137CrossRefGoogle Scholar
  39. 39.
    Burgos P, Pérez-de-Mora A, Medejón P et al (2008) Trace elements in wild grasses: a phytoavailability study on remediated field. Environ Geochem Health 30:109–114CrossRefGoogle Scholar
  40. 40.
    Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 318:285–298CrossRefGoogle Scholar
  41. 41.
    Migeon A, Richaud P, Guinet F et al (2009) Metal accumulation by woody species on contaminated sites in the north of France. Water Air Soil Pollut 204:89–101CrossRefGoogle Scholar
  42. 42.
    Andra SS, Datta R, Sarkar D et al (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass (Vetiveria zizanioides (L)) using liquid chromatography and mass spectrometry. Environ Pollut 157:2173–2183CrossRefGoogle Scholar
  43. 43.
    Wilde EW, Brigmon RL, Dunn DL et al (2005) Phytoextraction of lead from firing range soil by Vetiver grass. Chemosphere 61:1451–1457CrossRefGoogle Scholar
  44. 44.
    Yang B, Shu WS, Ye ZH et al (2003) Growth and metal accumulation in Vetiver and two Sesbania species on lead/zinc mine tailing. Chemosphere 52:1593–1600CrossRefGoogle Scholar
  45. 45.
    Unterbrunner R, Pushenreiter M, Sommer P et al (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148:107–114CrossRefGoogle Scholar
  46. 46.
    Tlustos P, Szakova J, Vyslouzilova M et al (2007) Variation in the uptake of arsenic, cadmium, lead and zinc by different species of willows Salix spp. grown in contaminated soils. Centr Eur J Biol 2:254–275Google Scholar
  47. 47.
    Boruvka L, Kozak J, Kristoufkova S (1997) Heavy metal accumulation in plants grown in heavily polluted soils. Folia Microbiol 42:524–526CrossRefGoogle Scholar
  48. 48.
    Ko BG, Volgeler I, Bolan NS et al (2007) Mobility of copper, chromium and arsenic from treated timber into grapevines. Sci Total Environ 388:35–42CrossRefGoogle Scholar
  49. 49.
    French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395CrossRefGoogle Scholar
  50. 50.
    Iori V, Pietrini F, Massacci A, Zacchini M (2015) Morpho-physiological responses, heavy metal accumulation and phytoremoval ability in four willow clones exposed to cadmium under hydroponics. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer International Publishing, Switzerland, pp 87–98Google Scholar
  51. 51.
    McBride MB, Martinez CE, Kim B (2016) Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically. Int J Phytoremediation 18:1178–1186CrossRefGoogle Scholar
  52. 52.
    Tőzsér D, Magura T, Simon E (2017) Heavy metal uptake by plant parts of willow species: a meta-analysis. J Hazard Mater 336:101–109CrossRefGoogle Scholar
  53. 53.
    Pietrini F, Zacchini M, Pietrosanti L et al (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediation 12:105–120CrossRefGoogle Scholar
  54. 54.
    Bert V, Neu S, Zdanevitch I et al (2017) How to manage plant biomass originated from phytotechnologies? Gathering perceptions from end-users. Int J Phytoremediation 19(10):947–954CrossRefGoogle Scholar
  55. 55.
    Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  56. 56.
    Chang P, Kim JY, Kim KW (2005) Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailing in South Korea. Environ Geochem Health 27:109–119CrossRefGoogle Scholar
  57. 57.
    Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic-a hardy, versatile, fast growing plant helps to remove arsenic contaminated soils. Nature 409:579CrossRefGoogle Scholar
  58. 58.
    Lunackova L, Sottnikova A, Masarovicova E et al (2003) Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. Biol Plant 47:403–411CrossRefGoogle Scholar
  59. 59.
    Pietrini F, Iori V, Bianconi D et al (2015) Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters. J Environ Manag 162:221–231CrossRefGoogle Scholar
  60. 60.
    Chehregani A, Noori M, Yazdi HL (2009) Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol Environ Saf 72:1349–1353CrossRefGoogle Scholar
  61. 61.
    Iori V, Pietrini F, Cheremisina A et al (2013) Growth responses, metal accumulation and phytoremoval capability in Amaranthus plants exposed to nickel under hydroponics. Water Air Soil Pollut 224:1450–1459CrossRefGoogle Scholar
  62. 62.
    Srivastava J, Kayastha S, Jamil S, Srivastava V (2008) Environmental perspectives of Vetiver zizanioides (L.) Nash. Acta Physiol Plant 30:413–417CrossRefGoogle Scholar
  63. 63.
    Boonyapookana B, Parkpian P, Techapinyawat S et al (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Health 40:117–137CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fabrizio Pietrini
    • 1
  • Valentina Iori
    • 1
  • Lucia Pietrosanti
    • 1
  • Laura Passatore
    • 1
  • Maria Clara Zuin
    • 2
  • Rita Aromolo
    • 3
  • Guido Capotorti
    • 4
  • Angelo Massacci
    • 1
  • Massimo Zacchini
    • 1
    Email author
  1. 1.Istituto di Biologia Agro-ambientale e Forestale (CNR), Sezione di MontelibrettiMonterotondo Scalo (RM)Italy
  2. 2.Istituto di Biologia Agro-ambientale e Forestale (CNR), Sezione di Legnaro, AgripolisLegnaro (PD)Italy
  3. 3.Centro di ricerca Agricoltura e AmbienteRomeItaly
  4. 4.Syndial Servizi AmbientaliRomeItaly

Personalised recommendations