Advertisement

Microbial-Assisted Phytoremediation: A Convenient Use of Plant and Microbes to Clean Up Soils

  • A. P. PintoEmail author
  • A. de Varennes
  • C. M. B. Dias
  • M. E. Lopes
Chapter

Abstract

Environmental pollution by metal(loid)s (e.g., heavy metals—HMs) is a severe problem worldwide, as soils and aquatic resources became increasingly contaminated, threatening land ecosystems, surface and groundwater, as well as food safety and human health. The primary sources contributing to this extended pollution are anthropogenic inputs related to the burning of fossil fuels, mining and continued industrial activities, disposal of municipal solid wastes and wastewater discharges or use for irrigation, and excessive utilization of fertilizers and pesticides. A consequence of these anthropogenic activities is an increase of contaminated areas, which should be remediated to prevent or mitigate transfer of contaminants into terrestrial, atmospheric, or aquatic environments. Point and diffuse contamination by organic and inorganic pollutants causes wide concerns, and intentional or accidental introduction of these substances in the environment may represent serious impacts on public health.

Keywords

Bacteria Fungi Metals Microbes Phytoremediation Pollution 

References

  1. 1.
    Pinto AP, de Varennes A, Lopes ME, Teixeira DM (2016) Biological approaches for remediation of metal-contaminated sites. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Management of environmental contaminants, vol 3. Springer, Wien, Austria, pp 65–112Google Scholar
  2. 2.
    Awad YM, Kim SC, Abd El-Azeem SAM, Kim KH, Kim KR, Kim K et al (2014) Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ Earth Sci 71:1433–1440CrossRefGoogle Scholar
  3. 3.
    He L, Yang H, Yu Z, Tang J, Xu L, Chen X (2014) Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels. J Environ Sci 26:2034–2040.  https://doi.org/10.1016/j.jes.2014.07.013CrossRefGoogle Scholar
  4. 4.
    Moreira H, Marques APGC, Rangel AOSS, Castro PML (2011) Heavy metal accumulation in plant species indigenous to a contaminated Portuguese site: prospects for phytoremediation. Water Air Soil Pollut 221:377–389CrossRefGoogle Scholar
  5. 5.
    Pinto AP, Varennes A, Fonseca R, Teixeira DM (2015) Phytoremediation of soils contaminated with heavy metals: techniques and strategies. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Management of environmental contaminants, vol 1. Springer, Wien, Austria, pp 133–155Google Scholar
  6. 6.
    Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z et al (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55PubMedCrossRefGoogle Scholar
  7. 7.
    Tang Z, Zhang L, Huang Q, Yang Y, Nie Z, Cheng J et al (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol Environ Saf 122:343–351PubMedCrossRefGoogle Scholar
  8. 8.
    Teng Y, Wu J, Lu S, Wang Y, Jiao X, Song L (2014) Soil and soil environmental quality monitoring in China: a review. Environ Int 69:177–199PubMedCrossRefGoogle Scholar
  9. 9.
    Zeng GM, Chen M, Zeng ZT (2013) Risks of neonicotinoid pesticides. Science 340(6139):1403.  https://doi.org/10.1126/science.340.6139.1403-aCrossRefPubMedGoogle Scholar
  10. 10.
    Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q et al (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Perez J (2012) The soil remediation industry in Europe: the recent past and future perspectives. Ernst and Young, London, pp 2–22Google Scholar
  12. 12.
    Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120PubMedCrossRefGoogle Scholar
  13. 13.
    Cristaldi A, Conti GO, Jho EH, Zucarello P, Grass A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326CrossRefGoogle Scholar
  14. 14.
    Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653PubMedCrossRefGoogle Scholar
  15. 15.
    Shayler H, McBride M, Harrison E (2009) Sources and impacts of contaminants in soils. Department of Crop & Soil Sciences, Cornell Waste Management Institute, Ithaca, NY http://cwmi.css.cornell.eduGoogle Scholar
  16. 16.
    Conceição Gomes MA, Hauser-Davis RA, Nunes de Souza A, Vitória AP (2016) Metal phytoremediation: general strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf 134:133–147CrossRefGoogle Scholar
  17. 17.
    Horta A, Malone B, Stockmann U, Minasny B, Bishop TFA, McBratney AB et al (2015) Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma 241–242:180–209CrossRefGoogle Scholar
  18. 18.
    Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636PubMedCrossRefGoogle Scholar
  19. 19.
    Heckenroth A, Rabier J, Dutoit T, Torre F, Prudent P, Laffont-Schwob I (2016) Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: tools for a non-destructive and integrative approach. J Environ Manage 183:850–863PubMedCrossRefGoogle Scholar
  20. 20.
    Luo J, Cai L, Qi S, Wu J, Gu XS (2017) A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site. J Environ Manage 204:17–22PubMedCrossRefGoogle Scholar
  21. 21.
    Luo N, Li X, Chen AY, Zhang LJ, Zhao HM, Xiang L et al (2017) Does arbuscular mycorrhizal fungus affect cadmium uptake and chemical forms in rice at different growth stages? Sci Total Environ 599–600:1564–1572PubMedCrossRefGoogle Scholar
  22. 22.
    Hazrat A, Ezzat K, Muhammad AS (2013) Phytoremediation of heavy metal–concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  23. 23.
    Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600PubMedCrossRefGoogle Scholar
  24. 24.
    Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  25. 25.
    Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C et al (2017) Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation. Sci Total Environ 581–582:676–688PubMedCrossRefGoogle Scholar
  26. 26.
    Mojiri A, Lou Z, Tajuddin RM, Farraji H, Alifar N (2016) Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system. J Environ Manage 166:124–130PubMedCrossRefGoogle Scholar
  27. 27.
    Salam JA, Hatha MAA, Das N (2017) Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manage 193:394–399PubMedCrossRefGoogle Scholar
  28. 28.
    Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242PubMedCrossRefGoogle Scholar
  29. 29.
    Jiang Y, Lei M, Duan L, Longhurst P (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339CrossRefGoogle Scholar
  30. 30.
    Tahir U, Yasmin A, Khan UH (2016) Phytoremediation: potential flora for synthetic dyestuff metabolism. J King Saud Univ Sci 28:119–130.  https://doi.org/10.1016/j.jksus.2015.05.009CrossRefGoogle Scholar
  31. 31.
    Coninx L, Martinova V, Rineau F (2017) Chapter Four - Mycorrhiza-assisted phytoremediation. Adv Bot Res 83:127–188CrossRefGoogle Scholar
  32. 32.
    Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  33. 33.
    Gerhardt K, Gerwing P, Greenberg B (2017) Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185CrossRefGoogle Scholar
  34. 34.
    Mudhoo A, Sharma SK, Lin ZQ, Dhankher OP (2010) Phytoremediation of arsenic-contaminated environment an overview. In: Sharma A, Mudhoo SK (eds) Green chemistry for environmental sustainability, vol 127. Taylor and Francis Group, Boca RatanGoogle Scholar
  35. 35.
    Sreelal G, Jayanthi R (2017) Review on phytoremediation technology for removal of soil contaminant. Indian J Sci Res 14:127–130Google Scholar
  36. 36.
    Alford ER, Pilon-Smits EAH, Paschke MW (2010) Metallophytes - a view from the rhizosphere. Plant Soil 337:33–50.  https://doi.org/10.1007/s11104-010-0482-3CrossRefGoogle Scholar
  37. 37.
    Cabral L, Soares CFRS, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31:1655–1664PubMedCrossRefGoogle Scholar
  38. 38.
    Krznaric E, Wevers JHL, Cloquet C, Vangronsveld J, Vanhaecke F, Colpaert JV (2010) Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris. Environ Microbiol 12(8):2133–2134PubMedGoogle Scholar
  39. 39.
    Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214CrossRefGoogle Scholar
  40. 40.
    Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721PubMedCrossRefGoogle Scholar
  41. 41.
    Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manage 198:132–143PubMedCrossRefGoogle Scholar
  42. 42.
    Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S et al (2016) Rhizobacteria and phytoremediation of heavy metals. Environ Technol Rev 5:112–119.  https://doi.org/10.1080/21622515.2016.1259358CrossRefGoogle Scholar
  43. 43.
    Rajkumar M, Prasad MNV, Sandhya S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86PubMedCrossRefGoogle Scholar
  44. 44.
    Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106PubMedCrossRefGoogle Scholar
  45. 45.
    Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y et al (2011) Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater 185:717–724PubMedCrossRefGoogle Scholar
  46. 46.
    Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2013) Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59. Chemosphere 91:41–47PubMedCrossRefGoogle Scholar
  47. 47.
    Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2013) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21:2346–2357CrossRefGoogle Scholar
  48. 48.
    Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374PubMedCrossRefGoogle Scholar
  49. 49.
    Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  50. 50.
    Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258PubMedCrossRefGoogle Scholar
  51. 51.
    Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H (2015) Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci 5:757PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25PubMedCrossRefGoogle Scholar
  53. 53.
    Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160PubMedCrossRefGoogle Scholar
  54. 54.
    Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefGoogle Scholar
  55. 55.
    Lebeau T, Braud A, Jequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522PubMedCrossRefGoogle Scholar
  56. 56.
    Khan A, Ullah I, Waqas M, Park G, Khan A, Hong S et al (2017) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf 136:180–188PubMedCrossRefGoogle Scholar
  57. 57.
    Khan AR, Waqas M, Ullah I, Khan AL, Khan MA, Lee IJ, Shin JH (2017) Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot 135:126–135.  https://doi.org/10.1016/j.envexpbot.2016.03.005CrossRefGoogle Scholar
  58. 58.
    Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408CrossRefGoogle Scholar
  59. 59.
    Cao XF, Liu LP (2015) Using microorganisms to facilitate phytoremediation in mine tailings with multi heavy metals. Adv Mater Res 1094:437–440.  https://doi.org/10.4028/www.scientific.net/AMR.1094.437CrossRefGoogle Scholar
  60. 60.
    Leung HM, Wang ZW, Ye ZH, Yung KL, Peng XL, Cheung KC (2013) Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23:549–563CrossRefGoogle Scholar
  61. 61.
    Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S et al (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259CrossRefGoogle Scholar
  62. 62.
    Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–189PubMedCrossRefGoogle Scholar
  63. 63.
    Schneider J, Bundschuh J, Nascimento C (2016) Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. Sci Total Environ 572:86–97.  https://doi.org/10.1016/j.scitotenv.2016.07.185CrossRefPubMedGoogle Scholar
  64. 64.
    Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189CrossRefGoogle Scholar
  65. 65.
    Li H, Li X, Xiang L, Zhao HM, Li YW, Cai QY et al (2018) Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Sci Total Environ 613–614:447–455PubMedCrossRefGoogle Scholar
  66. 66.
    Lu YF, Lu M (2015) Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. J Hazard Mater 285:535–541PubMedCrossRefGoogle Scholar
  67. 67.
    Mohammad A, Mittra B (2013) Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melongena L. and Sorghum sudanense Staph. seedlings under salinity and heavy metal stress conditions. Arch Agron Soil Sci 59:173–183CrossRefGoogle Scholar
  68. 68.
    Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195CrossRefGoogle Scholar
  69. 69.
    Sieverding E, Oehl F (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual 80:69–81Google Scholar
  70. 70.
    Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H et al (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153PubMedCrossRefGoogle Scholar
  71. 71.
    Leung HM, Wu FY, Cheung KC, Ye ZH, Wong MH (2010) The effect of arbuscular mycorrhizal fungi and phosphate amendment on arsenic uptake, accumulation and growth of Pteris Vittata in As-contaminated soil. Int J Phytoremediation 12:384–403PubMedCrossRefGoogle Scholar
  72. 72.
    Leung HM, Wu FY, Cheung KC, Ye ZH, Wong MH (2010) Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. J Hazard Mater 181:497–507PubMedCrossRefGoogle Scholar
  73. 73.
    Chaturvedi R, Favas P, Pratas J, Varun M, Paul MS (2018) Assessment of edibility and effect of arbuscular mycorrhizal fungi on T Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicol Environ Saf 148:318–326.  https://doi.org/10.1016/j.ecoenv.2017.10.048CrossRefPubMedGoogle Scholar
  74. 74.
    Qiao Y, Crowley D, Wang K, Zhang H, Li H (2015) Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environ Pollut 206:636–643PubMedCrossRefGoogle Scholar
  75. 75.
    Fortin JA, Plenchette C, Piché Y (2009) Mycorrhizas: the new green revolution. Québec City, CA, Editions MultiMondesGoogle Scholar
  76. 76.
    Garg N, Chandel S (2012) Role of arbuscular mycorrhizal (am) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (l.) millsp. under NaCl and Cd stresses. J Plant Growth Regul 31:292–308CrossRefGoogle Scholar
  77. 77.
    Sarwat M, Hashem A, Ahanger MA, Abd Allah EF, Alqarawi AA, Alyemeni MN et al (2016) Mitigation of NaCl stress by arbuscular mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica juncea L.) plants. Front Plant Sci 7:869PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24CrossRefGoogle Scholar
  79. 79.
    Krznaric E, Verbruggen N, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1585PubMedCrossRefGoogle Scholar
  80. 80.
    Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738PubMedCrossRefGoogle Scholar
  81. 81.
    Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181PubMedCrossRefGoogle Scholar
  82. 82.
    Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–777CrossRefGoogle Scholar
  83. 83.
    Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17CrossRefGoogle Scholar
  84. 84.
    Tian W, Zhang CQ, Qiao P, Milne R (2011) Diversity of culturable ericoid mycorrhizal fungi of Rhododendron decorum in Yunnan. China Mycol 103:703–709CrossRefGoogle Scholar
  85. 85.
    Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378PubMedCrossRefGoogle Scholar
  86. 86.
    Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122PubMedCrossRefGoogle Scholar
  87. 87.
    Andrade SAL, Silveira APD, Mazzafera P (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Sci Total Environ 408:5381–5391PubMedCrossRefGoogle Scholar
  88. 88.
    Leyval C, Joner E, Del Val C, Haselwandter K (2001) Potential of arbuscular mycorrhiza for bioremediation. Mycorrhiza 7:308–317Google Scholar
  89. 89.
    Vosátka M, Rydlová J, Sudová R, Vohník M (2006) Mycorrhizal fungi as helping agents in phytoremediation of degraded and contaminated soils. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation rhizoremediation. Springer, Heidelberg, pp 237–257CrossRefGoogle Scholar
  90. 90.
    Vodnik D, Grčman H, Maček I, van Elteren JT, Kovačevič M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136PubMedCrossRefGoogle Scholar
  91. 91.
    Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi, Soil Biol. Biochem. 37:101–106CrossRefGoogle Scholar
  92. 92.
    Malekzadeh E, Aliasgharzad N, Majidi J, Abdolalizadeh J, Aghebati-Maleki L (2016) Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant. Eur J Soil Biol 74:45–51.  https://doi.org/10.1016/j.ejsobi.2016.03.003CrossRefGoogle Scholar
  93. 93.
    González-Chávez C, D’Haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297CrossRefGoogle Scholar
  94. 94.
    Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160PubMedCrossRefGoogle Scholar
  95. 95.
    González-Chávez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171CrossRefGoogle Scholar
  96. 96.
    Luo J, Cai L, Qi S, Wu J, Gu XS (2017) Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks. Chemosphere 180:386–393CrossRefGoogle Scholar
  97. 97.
    Shen H, Christie P, Li X (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ Geochem Health 28:111–119PubMedCrossRefGoogle Scholar
  98. 98.
    Janoušková M, Pavlíková D (2010) Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil 332:511–520CrossRefGoogle Scholar
  99. 99.
    Yu H, Xiang Z, Zhu Y, Wang J, Yang Z, Yang PZ (2012) Subcellular and molecular distribution of cadmium in two rice genotypes with different levels of cadmium accumulation. J Plant Nutr 35:71–84CrossRefGoogle Scholar
  100. 100.
    Zeng F, Zhou W, Qiu B, Ali S, Wu F, Zhang G (2011) Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity. J Plant Nutr Soil Sci 174:249–256CrossRefGoogle Scholar
  101. 101.
    Wang Y, Jing H, Gao Y (2012) Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLoS One 7:3161–3164Google Scholar
  102. 102.
    Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574PubMedCrossRefGoogle Scholar
  103. 103.
    Zarei M, Wubet T, Schäfer SH, Savaghebi GR, Jouzani GS, Nekouei MK et al (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765PubMedCrossRefGoogle Scholar
  104. 104.
    Wei Y, Hou H, Xian Y, Guan S, Li JN, Li FS (2014) Genetic diversity of endophytic bacteria of the manganese-hyperaccumulating plant Phytolacca americana growing at a manganese mine. Eur J Soil Biol 62:15–21CrossRefGoogle Scholar
  105. 105.
    Wei Y, Hou H, Li JN, ShangGuan YX, Xu YF, Zhang J et al (2014) Molecular diversity of arbuscular mycorrhizal fungi associated with an Mn hyperaccumulator—Phytolacca americana, in Mn mining area. Appl Soil Ecol 82:11–17.  https://doi.org/10.1016/j.apsoil.2014.05.005CrossRefGoogle Scholar
  106. 106.
    Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264PubMedCrossRefGoogle Scholar
  107. 107.
    Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS et al (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481PubMedCrossRefGoogle Scholar
  108. 108.
    Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic-resistant endophytic bacteria from hyperaccumuators Pteris vittata and Pteris multifida. Chemosphere 113:9–16PubMedCrossRefGoogle Scholar
  109. 109.
    Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Int J Phytoremediation 4:205–221CrossRefGoogle Scholar
  110. 110.
    Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B et al (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147PubMedCrossRefGoogle Scholar
  111. 111.
    Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232CrossRefGoogle Scholar
  114. 114.
    Sheikh-Assadi M, Khandam-Mirkohi A, Alemardan A, Moreno-Jiménez E (2015) Mycorrhizal Limonium sinuatum (l.) Mill. enhances accumulation of lead and cadmium. Int J Phytoremediation 17:556–562PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16CrossRefGoogle Scholar
  116. 116.
    Aly A, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant Microbe Interact 17:6–15PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Stepniewska Z, Kuzniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Deng Z, Wang W, Tan H, Cao L (2012) Characterization of heavy metal-resistant endophytic yeast Cryptococcus sp. CBSB78 from rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut 223:5321–5329CrossRefGoogle Scholar
  120. 120.
    Wang W, Deng Z, Tan H, Cao L (2013) Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Int J Phytoremediation 15:488–497PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Babu AG, Shim J, Shea PJ, Oh BT (2014) Penicillium aculeatum PDR-4 and Tri-choderma sp. PDR-16 promote phytoremediation of mine tailing soil and bio-energy production with Sorghum sudan grass. Ecol Eng 69:186–191CrossRefGoogle Scholar
  122. 122.
    Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage 132:129–134PubMedCrossRefGoogle Scholar
  123. 123.
    Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85CrossRefGoogle Scholar
  124. 124.
    Pierart A, Dumat C, Maes AQM, Sejalon-Delmas N (2018) Influence of arbuscular mycorrhizal fungi on antimony phyto-uptake and compartmentation in vegetables cultivated in urban gardens. Chemosphere 191:272–279PubMedCrossRefGoogle Scholar
  125. 125.
    Gil-Cardeza ML, Müller DR, Amaya-Martin SM, Viassolo R, Gómez E (2018) Differential responses to high soil chromium of two arbuscular mycorrhizal fungi communities isolated from Cr-polluted and non-polluted rhizospheres of Ricinus communis. Sci Total Environ 625:1113–1121PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kodre A, Arcon I, Vogel-Mikuš K, Debeljak M, Potisek M, Likar M (2017) Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure. Environ Exp Bot 133:12–23CrossRefGoogle Scholar
  127. 127.
    Huang X, Ho SH, Zhu S, Ma F, Wu J, Yang J et al (2017) Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. J Environ Manage 197:448–455.  https://doi.org/10.1016/j.jenvman.2017.04.014CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Wei Y, Su Q, Sun ZJ, Shen YQ, Li JN, Zhu XL et al (2016) The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony. Appl Soil Ecol 107:244–250CrossRefGoogle Scholar
  129. 129.
    Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonovab E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63CrossRefGoogle Scholar
  130. 130.
    Mani D, Kumar C, Patel NK (2016) Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L. cut flower. Ecotoxicol Environ Saf 124:435–446PubMedCrossRefGoogle Scholar
  131. 131.
    De Souza LA, Andrade SAL, De Souza SCR, Schiavinato MA (2012) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34:523–531CrossRefGoogle Scholar
  132. 132.
    Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300CrossRefGoogle Scholar
  133. 133.
    Arwidsson Z, Johansson E, von Kronhelm T, Allard B, van Hees P (2010) Remediation of metal contaminated soil by organic metabolites from fungi—production of organic acids. Water Air Soil Pollut 205:215–226CrossRefGoogle Scholar
  134. 134.
    Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182:83–90CrossRefGoogle Scholar
  135. 135.
    Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366CrossRefGoogle Scholar
  136. 136.
    González-Chávez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141CrossRefGoogle Scholar
  138. 138.
    Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  139. 139.
    Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R et al (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR et al (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493.  https://doi.org/10.1007/s11104-009-0127-6CrossRefGoogle Scholar
  143. 143.
    Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542.  https://doi.org/10.2136/sssaj2008.0240CrossRefGoogle Scholar
  144. 144.
    Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manage 151:160–166PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  146. 146.
    He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:196–195Google Scholar
  147. 147.
    Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I et al (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678.  https://doi.org/10.1016/j.soilbio.2009.11.024CrossRefGoogle Scholar
  149. 149.
    Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  150. 150.
    Hallmann J, Rodriguez-Kaban R, Kloepper J (1999) Chitin mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560CrossRefGoogle Scholar
  151. 151.
    Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–236Google Scholar
  153. 153.
    Gagne S, Richard C, Rousseau H, Antoun H (1987) Xylem-residing bacteria in alfalfa roots. Can J Microbiol 33:996–1000CrossRefGoogle Scholar
  154. 154.
    Agarwal S, Shende ST (1987) Tetrazolium reducing microorganisms inside the root of Brassica species. Curr Sci 56:187–188Google Scholar
  155. 155.
    Roos IMM, Hattingh MJ (1983) Scanning electron microscopy of Pseudomonas syringae pv. morsprunorum on sweet cherry leaves. Phytopathol Z 108:18–25CrossRefGoogle Scholar
  156. 156.
    Leben C, Daft GC, Schmitthenner AF (1968) Bacterial blight of soybeans: population levels of Pseudomonas glycinea in relation to symptom development. Phytopathology 58:1143–1146Google Scholar
  157. 157.
    Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Viena, pp 1–15CrossRefGoogle Scholar
  159. 159.
    Porteous-Moore F, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556CrossRefGoogle Scholar
  160. 160.
    Bacon CW, Hinton DM (2011) In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Can J Microbiol 57:1–8CrossRefGoogle Scholar
  161. 161.
    Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. JEnviron Manage. 174:14–25PubMedCrossRefGoogle Scholar
  162. 162.
    Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560PubMedCrossRefGoogle Scholar
  163. 163.
    van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296PubMedCrossRefGoogle Scholar
  164. 164.
    Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071PubMedCrossRefGoogle Scholar
  165. 165.
    Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández Á (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210.  https://doi.org/10.1016/j..2013.03.027CrossRefPubMedGoogle Scholar
  166. 166.
    Becerra-Castro C, Prieto-Fernández Á, Kidd PS, Weyens N, Rodríguez-Garrido B, Touceda-González M et al (2013) Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362:247–260.  https://doi.org/10.1007/s11104-012-1276-6CrossRefGoogle Scholar
  167. 167.
    Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556.  https://doi.org/10.1146/annurev.micro.62.081307.162918CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598.  https://doi.org/10.1016/j.tibtech.2009.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254.  https://doi.org/10.1016/j.copbio.2009.02.012CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Zafar M, Abbasi MK, Khan MA, Khaliq A, Sultan T, Aslam M (2012) Effect of plant growth-promoting rhizobacteria on growth, nodulation and nutrient accumulation of lentil under controlled conditions. Pedosphere 22:848–859.  https://doi.org/10.1016/S1002-0160(12)60071-XCrossRefGoogle Scholar
  171. 171.
    Joshi P, Juwarkar A (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Sheoran N, Valiya Nadakkakath A, Munjal V, Kundu A, Subaharan K, Venugopal V et al (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Aravind R, Eapen SJ, Kumar A, Ramana KV (2010) Screening of endophytic bacteria and evaluation of selected isolates for suppression of burrowing nematode Radopholus similis Thorne using three varieties of black pepper (Piper nigrum L.). Crop Prot 29:318–324CrossRefGoogle Scholar
  175. 175.
    Bacon CW, Hinton DM, Mitchell TR, Snook ME, Olubajo B (2012) Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control 62:1–9CrossRefGoogle Scholar
  176. 176.
    Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495PubMedCrossRefGoogle Scholar
  177. 177.
    Gechev TS, van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101PubMedCrossRefGoogle Scholar
  178. 178.
    Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y (2012) Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89:743–750PubMedCrossRefGoogle Scholar
  179. 179.
    Zhang XX, Li CJ, Nan ZB (2010) Effects of cadmium stress on growth and antioxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175:703–709PubMedCrossRefGoogle Scholar
  180. 180.
    Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483PubMedCrossRefGoogle Scholar
  181. 181.
    Luo SL, Chen L, Chen JL, Xiao X, Xu TY, Wan Y et al (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138PubMedCrossRefGoogle Scholar
  182. 182.
    Luo SL, Wan Y, Xiao X, Guo H, Chen L, Xi Q et al (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644PubMedCrossRefGoogle Scholar
  183. 183.
    Shin M, Shim J, You Y, Myung H, Bang KS, Cho M et al (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199–200:314–320PubMedCrossRefGoogle Scholar
  184. 184.
    Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Proc Eng 32:177–183CrossRefGoogle Scholar
  185. 185.
    Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M et al (2011) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725PubMedCrossRefGoogle Scholar
  186. 186.
    Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW et al (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644PubMedCrossRefGoogle Scholar
  188. 188.
    Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977PubMedPubMedCentralGoogle Scholar
  189. 189.
    Shoeb E, Badar U, Akhter J, Shams H, Sultana M, Ansari MA (2012) Horizontal gene transfer of stress resistance genes through plasmid transport. World J Microbiol Biotechnol 28:1021–1025PubMedCrossRefGoogle Scholar
  190. 190.
    Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163PubMedCrossRefGoogle Scholar
  191. 191.
    Cursino L, Mattos SV, Azevedo V, Galarza F, Bucker DH, Chartone-Souza E et al (2000) Capacity of mercury volatilization by mer (from Escherichia coli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli. Sci Total Environ 261:109–113PubMedCrossRefGoogle Scholar
  192. 192.
    Pereira SIA, Castro PML (2014) Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ Sci Pollut Res 21:14110–14123CrossRefGoogle Scholar
  193. 193.
    Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2015) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-014-3699-5PubMedCrossRefGoogle Scholar
  194. 194.
    Gupta G, Panwar J, Jha PN (2013) Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.). R. Br. Appl Soil Ecol 64:252–261CrossRefGoogle Scholar
  195. 195.
    Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178PubMedCrossRefGoogle Scholar
  196. 196.
    Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5:111–121.  https://doi.org/10.1007/s13205-014-0206-0CrossRefPubMedGoogle Scholar
  197. 197.
    Kumar S (2016) Characterization of phosphate solubilising and mineralizing bacteria from grain legumes. Dissertation, Final thesis, Punjab Agricultural University, Ludhiana, IndiaGoogle Scholar
  198. 198.
    Guiñazú LB, Andrés JA, Del MFP, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soil 46:185–190CrossRefGoogle Scholar
  199. 199.
    Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296PubMedCrossRefGoogle Scholar
  200. 200.
    Khan KS, Joergensen RG (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100:303–309PubMedCrossRefGoogle Scholar
  201. 201.
    Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368.  https://doi.org/10.1080/15226510008500044CrossRefGoogle Scholar
  202. 202.
    Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339PubMedCrossRefGoogle Scholar
  203. 203.
    Barry SM, Challis GL (2009) Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13:1–11CrossRefGoogle Scholar
  204. 204.
    Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefGoogle Scholar
  205. 205.
    Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:1–9CrossRefGoogle Scholar
  206. 206.
    Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172PubMedCrossRefGoogle Scholar
  207. 207.
    Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25PubMedCrossRefGoogle Scholar
  208. 208.
    Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162CrossRefGoogle Scholar
  209. 209.
    Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696PubMedCrossRefGoogle Scholar
  210. 210.
    Tripathi M, Munot H, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237PubMedCrossRefGoogle Scholar
  211. 211.
    Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498PubMedCrossRefGoogle Scholar
  212. 212.
    Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Shi YW, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653CrossRefGoogle Scholar
  214. 214.
    Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1245PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977CrossRefGoogle Scholar
  216. 216.
    Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Persello-Cartieaux F, Nussaumev L, Robaglia C (2003) Tales from the under-ground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  218. 218.
    Bashan Y, Holguin G (1997) Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121CrossRefGoogle Scholar
  219. 219.
    Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, London, pp 77–86Google Scholar
  220. 220.
    Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR 12-2 that over produce indole acetic acid. Curr Microbiol 32:67–71CrossRefGoogle Scholar
  221. 221.
    Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 2006(19):827–837CrossRefGoogle Scholar
  222. 222.
    Sheng XF, Jiang CY, He LY (2008) Characterization of plant growth-promoting inoculated Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Can J Microbiol 54:417–422PubMedCrossRefGoogle Scholar
  223. 223.
    Sun Q, Rost TL, Matthews MA (2006) Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae). Am J Bot 93:1567–1576PubMedCrossRefGoogle Scholar
  224. 224.
    Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot London 95:707–735CrossRefGoogle Scholar
  225. 225.
    Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48PubMedCrossRefGoogle Scholar
  226. 226.
    Guo HJ, Luo SL, Chen L, Xiao X, Xi Q, Wei WZ et al (2010) Bioremediation of heavy metals by growing hyper-accumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–8605PubMedCrossRefGoogle Scholar
  227. 227.
    Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C et al (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316PubMedCrossRefGoogle Scholar
  228. 228.
    Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediation 4:101–115PubMedCrossRefGoogle Scholar
  229. 229.
    Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C et al (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267CrossRefGoogle Scholar
  230. 230.
    Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194.  https://doi.org/10.1016/j.soilbio.2013.01.012CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Sheng XF, He LY, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22PubMedCrossRefGoogle Scholar
  232. 232.
    Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy-metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–262PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Pulsawat W, Leksawasdi N, Rogers PL, Foster LJR (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Diels L, Spaans PH, Van Roy S, Hooyberghs L, Ryngaert A, Wouters H et al (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241CrossRefGoogle Scholar
  237. 237.
    Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467.  https://doi.org/10.1002/jobm.200700275CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Ranjard L, Nazaret S, Cournoyer B (2003) Freshwater bacteria can methylate selenium through the thiopurine methyltransferase pathway. Appl Environ Microbiol 69:3784–3790PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA et al (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki KI et al (2012) Bergey’s manual of systematic bacteriology. Springer, New YorkCrossRefGoogle Scholar
  241. 241.
    Cardoso P, Corticeiro S, Freitas R, Figueira E (2018) Different efficiencies of the same mechanisms result in distinct Cd tolerance T within Rhizobium. Ecotoxicol Environ Saf 150:260–269PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Román-Ponce B, Reza-Vazquez DM, Gutierrez-Paredes S, De Haro-Cruz MJ, Maldonado-Hernandez J, Bahena-Osorio Y et al (2017) Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 27:511–526CrossRefGoogle Scholar
  243. 243.
    Rojjanateeranaj P, Sangthong C, Prapagdee B (2017) Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation. Chemosphere 185:764–771PubMedCrossRefGoogle Scholar
  244. 244.
    Seneviratne M, Gunaratnea S, Bandara T, Weerasundara L, Rajakaruna N, Seneviratne G et al (2016) Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South Afr J Bot 105:19–24CrossRefGoogle Scholar
  245. 245.
    Adediran GA, Ngwenyaa BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T et al (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16:321–333PubMedCrossRefGoogle Scholar
  247. 247.
    Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC 541. Int J Phytoremediation 14:261–274PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, Chen YX (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16:1409–1417PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY et al (2010) Characterization of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55CrossRefGoogle Scholar
  251. 251.
    Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836CrossRefGoogle Scholar
  252. 252.
    Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Beolchini F, Dell’Anno A, Propris LD, Ubaldini S, Cerrone F, Danovaro R (2009) Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74:1321–1326PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Hussein HS (2008) Optimization of plant-bacteria complex for phytoremediation of contaminated soils. Int J Bot 4:437–443CrossRefGoogle Scholar
  255. 255.
    Rodriguez H, Vessely S, Shah S, Glick BR (2008) Isolation and characterization of nickel resistant Pseudomonas strains and their effect on the growth of non-transformed and transgenic canola plants. Curr Microbiol 57:170–174PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44CrossRefGoogle Scholar
  258. 258.
    Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. J Basic Microbiol 47:513–517PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Wani PA, Khan MS, Zaidi A (2007) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42CrossRefGoogle Scholar
  261. 261.
    Someya N, Sato Y, Yamaguchi I, Hamamoto H, Ichiman Y, Akutsu K et al (2007) Alleviation of nickel toxicity in plants by a rhizobacterium strain is not dependent on its siderophore production. Commun Soil Sci Plant Anal 38:1155–1162CrossRefGoogle Scholar
  262. 262.
    Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 10:1996–2002CrossRefGoogle Scholar
  263. 263.
    Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Shilev S, Fernandez A, Benlloch M, Sancho ED (2006) Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, Netherlands, pp 315–326CrossRefGoogle Scholar
  265. 265.
    Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG et al (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318CrossRefGoogle Scholar
  266. 266.
    Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Vivas A, Biro B, Ruíz-Lozanoa JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 52:1523–1533CrossRefGoogle Scholar
  269. 269.
    Ashour EH, El-Mergawi RA, Radwan SMA (2006) Efficiency of Pseudomonas to phytoremediate nickel by canola (Brassica napus L.). J Appl Sci Res 2:375–382Google Scholar
  270. 270.
    Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S et al (2005) Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  272. 272.
    Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162.  https://doi.org/10.1016/j.femsec.2004.11.005CrossRefPubMedGoogle Scholar
  273. 273.
    Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241PubMedCrossRefGoogle Scholar
  274. 274.
    Carrillo-Castañeda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814CrossRefGoogle Scholar
  275. 275.
    Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–222CrossRefGoogle Scholar
  276. 276.
    Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted oil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577–588PubMedCrossRefGoogle Scholar
  277. 277.
    Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRefGoogle Scholar
  278. 278.
    Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187CrossRefGoogle Scholar
  279. 279.
    Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150PubMedCrossRefGoogle Scholar
  280. 280.
    Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefGoogle Scholar
  281. 281.
    Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668PubMedPubMedCentralGoogle Scholar
  282. 282.
    Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2:178–191Google Scholar
  283. 283.
    Barrutia O, Epelde L, García-Plazaola JI, Garbisu C, Becerril JM (2009) Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: effect of fertilization. Chemosphere 74:259–264PubMedCrossRefGoogle Scholar
  284. 284.
    Burges A, Epelde L, Blanco F, Becerril J, Garbisu C (2017) Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Sci Total Environ 584–585:329–338PubMedCrossRefGoogle Scholar
  285. 285.
    Buscaroli A (2017) An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review). Ecol Indicators 82:367–380CrossRefGoogle Scholar
  286. 286.
    Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344 Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  287. 287.
    Fiorentino N, Fagnano M, Adamo P, Impagliazzo A, Mori M, Pepe O et al (2013) Assisted phytoextraction of heavy metals: compost and trichoderma effects on giant reed (Arundo donax L) uptake and soil N-cycle microflora. Ital J Agron 8:244–250Google Scholar
  288. 288.
    Gou ZH, Miao XF (2010) Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L,) incontaminated soil with arsenic, cadmium and lead. J Cent South Univ Technol 17:770–777CrossRefGoogle Scholar
  289. 289.
    Shiri M, Rabhi M, Abdelly C, El Amrani A (2015) The halophytic model plant Thellungiella salsuginea exhibited increased tolerance to phenanthrene-induced stress in comparison with the glycophitic one Arabidopsis thaliana: application for phytoremediation. Ecol Eng 74:125–134CrossRefGoogle Scholar
  290. 290.
    Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18CrossRefGoogle Scholar
  291. 291.
    Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1999) Phytomining. Trends Plant Sci 1:359–362Google Scholar
  292. 292.
    Bridgwater AV, Meier M, Radlein D (1999) An over view of fast pyrolysis of biomass. Org Geochem 30:1479–1493CrossRefGoogle Scholar
  293. 293.
    Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25Google Scholar
  294. 294.
    Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley-Interscience, New YorkGoogle Scholar
  295. 295.
    Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321CrossRefGoogle Scholar
  296. 296.
    Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003CrossRefGoogle Scholar
  297. 297.
    Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M et al (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70CrossRefGoogle Scholar
  298. 298.
    Leštan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal contaminated soils: a review. Environ Pollut 153:3–13PubMedCrossRefGoogle Scholar
  299. 299.
    Kos B, Leštan D (2004) Soil washing of Pb, Zn and Cd using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa. Plant Soil 263:43–51CrossRefGoogle Scholar
  300. 300.
    Wu LH, Luo YM, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50:819–822PubMedCrossRefGoogle Scholar
  301. 301.
    Postrigan BN, Knyazev AV, Kuluev BRO, Yakhin I, Chemeris AV (2012) The activity of synthetic pseudophytochelating gene in tobacco plants. Fiziol Rastenii 59:303–308Google Scholar
  302. 302.
    Wood JL, Tang C, Franks AE (2016) Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biol Biochem 103:131–137.  https://doi.org/10.1016/j.soilbio.2016.08.021CrossRefGoogle Scholar
  303. 303.
    Ali N, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MFH et al (2015) Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environ Monit Assess 187:1–11CrossRefGoogle Scholar
  304. 304.
    Wu Q-S, Zou Y-N, He X-H (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304CrossRefGoogle Scholar
  305. 305.
    Piotrowski JS, Rillig MC (2008) Succession of arbuscular mycorrhizal fungi: patterns, causes, and considerations for organic agriculture. Adv Agron 97:111–130CrossRefGoogle Scholar
  306. 306.
    Renker C, Blanke V, Rstler B, Heinrichs J, Buscot FO (2004) Diversity of cryptococcus and dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Res 4:597–603PubMedCrossRefGoogle Scholar
  307. 307.
    Shahabivand S, Maivan HZ, Goltapeh EM, Sharifi M, Aliloo AA (2012) The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol Biochem 60:53–58PubMedCrossRefGoogle Scholar
  308. 308.
    Wang FY, Lin XG, Yin R (2007) Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytoremediation 9:345–353PubMedCrossRefGoogle Scholar
  309. 309.
    Li H, Ye ZH, Chan WF, Chen XW, Wu FX, Wu SC, Wong MH (2011) Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions? Environ Pollut 159:2537–2545PubMedCrossRefGoogle Scholar
  310. 310.
    Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ 409:1069–1074PubMedCrossRefGoogle Scholar
  311. 311.
    Bai Y, Liang J, Liu R, Hu C, Qu J (2014) Metagenomic analysis reveals microbial diversity and function in the rhizosphere soil of a constructed wetland. Environ Technol 35:2521–2527PubMedCrossRefGoogle Scholar
  312. 312.
    Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  313. 313.
    Ma Y, Rajkumar M, Freitas H (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161PubMedCrossRefGoogle Scholar
  314. 314.
    Sumi H, Kunito T, Ishikawa Y, Sato T, Park HD, Nagaoka K, Aikawa Y (2015) Plant roots influence microbial activities as well as cadmium and zinc fractions in metal-contaminated soil. Chem Ecol 31:105–110CrossRefGoogle Scholar
  315. 315.
    Bedini S, Turrini A, Rigo C, Argese E, Giovannetti M (2010) Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol Biochem 42:758–765CrossRefGoogle Scholar
  316. 316.
    Khade HW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202:45–56CrossRefGoogle Scholar
  317. 317.
    Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866CrossRefGoogle Scholar
  318. 318.
    Finlay R, Wallander H, Smits M, Holmstrom S, van Hees P, Lian B et al (2009) The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23:101–106CrossRefGoogle Scholar
  319. 319.
    Van Schöll L, Kuyper TW, Smits MM, Landeweert R, Holffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant and Soil 303:35–47CrossRefGoogle Scholar
  320. 320.
    Achakzai AK, Liasu MO, Popoola OJ (2012) Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil. Pak J Bot 44:221–230Google Scholar
  321. 321.
    Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177:465–474.  https://doi.org/10.1016/j.jhazmat.2009.12.056CrossRefPubMedGoogle Scholar
  322. 322.
    Körpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res 719:29–34PubMedCrossRefGoogle Scholar
  323. 323.
    Márquez-García B, Horemans N, Cuypers A, Guisez Y, Córdoba F (2011) Antioxidants in Erica andevalensis: a comparative study between wild plants and cadmium-exposed plants under controlled conditions. Plant Physiol Biochem 49:110–115PubMedCrossRefGoogle Scholar
  324. 324.
    Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q et al (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49CrossRefGoogle Scholar
  325. 325.
    Marques AP, Oliveira RS, Rangel AO, Castro PM (2006) Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere 65:1256–1263PubMedCrossRefGoogle Scholar
  326. 326.
    Marques AP, Oliveira RS, Rangel AO, Castro PM (2008) Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ Pollut 151:608–620PubMedCrossRefGoogle Scholar
  327. 327.
    Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846PubMedCrossRefGoogle Scholar
  328. 328.
    Ker K, Charest C (2010) Nickel remediation by AM-colonized sunflower. Mycorrhiza 20:399–406PubMedCrossRefGoogle Scholar
  329. 329.
    Sheoran V, Sheoran A, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26:148–166CrossRefGoogle Scholar
  330. 330.
    Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M et al (2010) Bacteria associated with Zn and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484PubMedCrossRefGoogle Scholar
  331. 331.
    Sessitsch A, Puschenreiter M (2008) Endophytes and rhizosphere bacteria of plants growing in heavy metal contaminated soil. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, BerlinGoogle Scholar
  332. 332.
    van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M et al (2000) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis Publishers (CRC Press), Boca Raton, FL, pp 265–281Google Scholar
  333. 333.
    Cabello-Conejo MI, Becerra-Castro C, Monterroso C, Prieto-Fernández A, Mench M, Kidd PS 2011 Effects of rhizobacterial inoculation on biomass and nickel concentration in Alyssum pintodasilvae. In: Proceedings of the 11th international conference on the biogeochemistry of trace elements (ICOBTE), 2011 July 4–7, Florence, ItalyGoogle Scholar
  334. 334.
    Guo J, Tang S, Ju X, Ding Y, Liao S, Song N (2011) Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 27:2835–2844CrossRefGoogle Scholar
  335. 335.
    Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182PubMedCrossRefPubMedCentralGoogle Scholar
  336. 336.
    Kim JO, Lee YW, Chung J (2013) The role of organic acids in the mobilization of heavy metals from soil. KSCE J Civil Eng 17:1596–1602CrossRefGoogle Scholar
  337. 337.
    Li W, Ye Z, Wong M (2009) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467CrossRefGoogle Scholar
  338. 338.
    Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757PubMedPubMedCentralCrossRefGoogle Scholar
  339. 339.
    Glick BR (2004) Teamwork in phytoremediation. Nat Biotechnol 22:526–527PubMedCrossRefGoogle Scholar
  340. 340.
    Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-,Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286PubMedCrossRefGoogle Scholar
  341. 341.
    Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657PubMedCrossRefGoogle Scholar
  342. 342.
    Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut 6:3–4CrossRefGoogle Scholar
  343. 343.
    Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91CrossRefGoogle Scholar
  344. 344.
    Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280PubMedCrossRefGoogle Scholar
  345. 345.
    Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  346. 346.
    Garcia de Salamone IE, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, The Netherlands, pp 173–195CrossRefGoogle Scholar
  347. 347.
    Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol 48:3795–3801CrossRefGoogle Scholar
  348. 348.
    Ortiz Castro R, Valencia Cantero E, Lopez Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265PubMedPubMedCentralCrossRefGoogle Scholar
  349. 349.
    Cabello-Conejo MI, Prieto-Fernandez T, Kidd PS (2014) Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants. Sci Total Environ 494–495:1–8PubMedCrossRefGoogle Scholar
  350. 350.
    Hadi F, Bano A, Fuller MP (2010) The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80:457–462PubMedCrossRefGoogle Scholar
  351. 351.
    Shilev SI, Ruso J, Puig A, Benlloch M, Jorrin J, Sancho E (2001) Rhizospheric bacteria promote sunflower (Helianthus annus L.) plant growth and tolerance to heavy metals. Minerva Biotechnol 13:37–39Google Scholar
  352. 352.
    Ghosh P, Rathinasabapathi B, Ma LQ (2011) Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 102:8756–8761PubMedCrossRefGoogle Scholar
  353. 353.
    Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M et al (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509PubMedCrossRefPubMedCentralGoogle Scholar
  354. 354.
    He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY et al (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5CrossRefGoogle Scholar
  355. 355.
    Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant Sedum alfredii. Plant Soil 326:453–467CrossRefGoogle Scholar
  356. 356.
    He LY, Chen Z-J, Ren G-D, Zhang Y-F, Qian M, Sheng X-F (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Exotoxicol Environ Saf 72:1343–1348CrossRefGoogle Scholar
  357. 357.
    Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683PubMedCrossRefPubMedCentralGoogle Scholar
  358. 358.
    Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:253–262CrossRefGoogle Scholar
  359. 359.
    Jiang C-Y, Sheng X-F, Qian M, Wang Q-Y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164PubMedCrossRefPubMedCentralGoogle Scholar
  360. 360.
    Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272CrossRefGoogle Scholar
  361. 361.
    Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M et al (2006) Fluorescent pseudomonads occurring in Macrotermes subhyalinusmound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400PubMedCrossRefPubMedCentralGoogle Scholar
  362. 362.
    Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135.  https://doi.org/10.1016/j.envpol.2005.06.023CrossRefPubMedPubMedCentralGoogle Scholar
  363. 363.
    Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299PubMedCrossRefPubMedCentralGoogle Scholar
  364. 364.
    Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997PubMedCrossRefGoogle Scholar
  365. 365.
    De Maria S, Rivelli AR, Kuffner M, Sessitsch A, Wenzel WW, Gorfer M et al (2011) Interactions between accumulation of trace elements and major nutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere 84:1256–1261PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • A. P. Pinto
    • 1
    • 2
  • A. de Varennes
    • 3
  • C. M. B. Dias
    • 1
    • 4
  • M. E. Lopes
    • 1
    • 4
  1. 1.Chemistry DepartmentUniversity of Évora, CLAVÉvoraPortugal
  2. 2.Institute of Mediterranean Agricultural and Environmental Sciences (ICAAM)University of ÉvoraÉvoraPortugal
  3. 3.Linking Landscape, Environment, Agriculture and Food, Instituto Superior de AgronomiaUniversity of LisbonLisbonPortugal
  4. 4.HERCULES LaboratoryUniversity of Évora, CLAVÉvoraPortugal

Personalised recommendations