Advertisement

Biological Aspects of Selenium and Silicon Nanoparticles in the Terrestrial Environments

  • Hassan El-Ramady
  • Tarek Alshaal
  • Nevien Elhawat
  • Eman El-Nahrawy
  • Alaa El-Dein Omara
  • Sahar El-Nahrawy
  • Tamer Elsakhawy
  • Azza Ghazi
  • Neama Abdalla
  • Miklós Fári
Chapter

Abstract

The application of both selenium (Se) and silicon (Si) could ameliorate different negative effects of abiotic and/or biotic stresses on plant growth. Under salt-stress conditions, selenium and silicon also could improve plant growth as well as increase the activity of enzymatic antioxidants, improving the balance of ions and osmotic adjustment. They could also use as a resistance provider against plant diseases and the attacks of insects as well as a nutrient supplement. They could also maintain the fertility of soils through improving the bioavailability of nutrients in soils for plants. Apart from selenium and silicon, nano-selenium and nano-silicon have gained a great attention nowadays as eco-friendly technologies. These technologies are considered very important for expanding the biological applications of the nanomaterials. These Se- and Si-nanomaterials have been developed in the field of nanotechnology in order to biosynthesize different nanomaterials for more applications. Many organisms recently have been used in biosynthesizing different varieties of inorganic nanomaterials in well-defined chemical composition. Nano-selenium and nano-silicon are considered promising nanoparticles in agriculture due to their significant roles in the biological systems. Many benefits could be gained from using these nanomaterials such as protection of plants against diseases and different stresses. These nanoparticles should be investigated in more details concerning the nano-safety research. Therefore, this chapter focuses on the beneficial roles of selenium and silicon elements for higher plants in the terrestrial environments, especially plant growth, uptake, and metabolism as well as biogenic synthesis of their elements by some organisms.

Keywords

Selenium Silicon Higher plants Terrestrial environments Biogenic synthesis 

Notes

Acknowledgments

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany) (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged. Also, authors would like to thank Tempus Public Foundation (TPF), Hungary, for co-financing this work and (Project ID: EFOP-3.6.2-16-2017-00001) research of complex rural economic and sustainable development, elaboration of its service networks in the Carpathian basin.

References

  1. 1.
    Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560.  https://doi.org/10.1007/s10529-015-2026-7CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(Issue 1, Part B):907–914CrossRefGoogle Scholar
  3. 3.
    Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes: a review. Colloids Surf B Biointerfaces 121:474–483PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhou L, Wei XC, Ma ZJ, Mei B (2017) Anti-friction performance of FeS nanoparticle synthesized by biological method. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2017.02.182CrossRefGoogle Scholar
  6. 6.
    Vetchinkina E, Loshchinina E, Kursky V, Nikitina V (2013) Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol 51:829–835PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Maruthupandy M, Zuo Y, Chen J-S, Song J-M, Shen Y-H (2017) Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Appl Surf Sci 397:167–174CrossRefGoogle Scholar
  8. 8.
    Salunke BK, Sawant SS, Lee S, Kim BS (2016) Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol 32:88PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sharma S, Kaur N, Kaur S, Nayyar H (2014) Ascorbic acid reduces the phytotoxic effects of selenium on rice (Oryza Sativa L.) by up-regulation of antioxidative and metal-tolerance mechanisms. J Plant Physiol.  https://doi.org/10.4172/2329-955X.1000128
  10. 10.
    Ramamurthy C, Sampath K, Arunkumar P, Suresh Kumar M, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng.  https://doi.org/10.1007/s00449-012-0867-1PubMedCrossRefGoogle Scholar
  11. 11.
    Li S, Shen Y, Xie A, Yu X, Zhang X, Yang L, Li C (2007) Rapid, roomtemperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology 18:405101CrossRefGoogle Scholar
  12. 12.
    Perry CC, Mann S, Williams RJP (1984) Structural and analytical studies of the silicified macrohairs from the lemma of the grass Phalaris canariensis L. Proc R Soc Lond B 222:427–438CrossRefGoogle Scholar
  13. 13.
    Perry CC, Fraser MA (1991) Silica deposition and ultrastructure in the cell wall of Equisetum arvense: the importance of cell wall structures and flow control in biosilicification? Phil Trans R Soc Lond B 334:149–157CrossRefGoogle Scholar
  14. 14.
    Hughes NP (1989) In vivo and in vitro studies of biomineralization processes. Ph.D. thesis, Oxford UniversityGoogle Scholar
  15. 15.
    Sumper M, Brunner E (2006) Learning from diatoms: nature’s tools for the production of nanostructured silica. Adv Funct Mater 16(1):17–26CrossRefGoogle Scholar
  16. 16.
    Dwivedi C, Shah C, Singh K, Kumar M, Bajaj P (2011) An organic acidinduced synthesis and characterization of selenium. Nanopart J Nanotechnol.  https://doi.org/10.1155/2011/651971CrossRefGoogle Scholar
  17. 17.
    Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces 80:94–102PubMedCrossRefGoogle Scholar
  18. 18.
    Prasad S, Vyas P, Prajapati V, Patel P, Selvaraj K (2012) Biomimetic synthesis of selenium nanoparticles using cell-free extract of Microbacterium sp. ARB05. Micro Nano Lett 8:11Google Scholar
  19. 19.
    Singh D, Kumar R, Kumar A, Rai KN (2008) Synthesis and characterization of rice husk silica, silica-carbon composite and H3PO4 activated silica. Ceramica 54:203–212CrossRefGoogle Scholar
  20. 20.
    Zare B, Babaie S, Setayesh N, Shahverdi A (2012) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1:14–20Google Scholar
  21. 21.
    Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6:599–602CrossRefGoogle Scholar
  22. 22.
    Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  23. 23.
    Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol Plant 58(2):265–273.  https://doi.org/10.1007/s10535-014-0391-zCrossRefGoogle Scholar
  24. 24.
    Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ Sci Pollut Res 22:9999–10008.  https://doi.org/10.1007/s11356-015-4187-2CrossRefGoogle Scholar
  25. 25.
    Shekari F, Abbasi A, Mustafavi SH (2015) Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J Saudi Soc Agric Sci.  https://doi.org/10.1016/j.jssas.2015.11.006CrossRefGoogle Scholar
  26. 26.
    Khan W-D, Aziz T, Maqsood MA, Sabir M, Ahmad HR, Ramzani PMA, Naseem M (2016) Silicon: a beneficial nutrient under salt stress, its uptake mechanism and mode of action. In: Hakeem KR et al (eds) Soil science: agricultural and environmental prospectives. Springer, Cham.  https://doi.org/10.1007/978-3-319-34451-5_12CrossRefGoogle Scholar
  27. 27.
    Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M et al (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manage 183(Part 3):521–529PubMedCrossRefGoogle Scholar
  28. 28.
    Nawaz F, Naeem M, Ashraf MY, Tahir MN, Zulfiqar B, Salahuddin M, Shabbir RN, Aslam M (2016) Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Front Plant Sci 7:1438.  https://doi.org/10.3389/fpls.2016.01438CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35:1–10.  https://doi.org/10.1007/s00344-015-9500-2CrossRefGoogle Scholar
  30. 30.
    Handa N, Kohli SK, Thukral AK, Arora S, Bhardwaj R (2017) Role of Se(VI) in counteracting oxidative damage in Brassica juncea L. under Cr(VI) stress. Acta Physiol Plant 39(51).  https://doi.org/10.1007/s11738-017-2352-6
  31. 31.
    Wu Z, Yin X, Bañuelos GS, Lin Z-Q, Liu Y, Li M, Yuan L (2016) Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Front Plant Sci 7:1875.  https://doi.org/10.3389/fpls.2016.01875CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tripathi DK, Singh VP, Ahmad P, Chauhan DK, Prasad SM (2017) Silicon in plants: advances and future prospects. Taylor & Francis Group, LLC, Boca Raton, FLGoogle Scholar
  33. 33.
    Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110(2017):70–81PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Balal RM, Shahid MA, Javaid MM, Iqbal Z, Anjum MA, Garcia-Sanchez F, Mattson NS (2017) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38:158.  https://doi.org/10.1007/s11738-016-2174-yCrossRefGoogle Scholar
  35. 35.
    Soundararajan P, Sivanesan I, Jana S, Jeong BR (2014) Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Hort Environ Biotechnol 55(4):271–279.  https://doi.org/10.1007/s13580-014-0023-8CrossRefGoogle Scholar
  36. 36.
    Rahmat S, Hajiboland R, Sadeghzade N (2016) Selenium delays leaf senescence in oil seed rape plants. Photosynthetica 54:1–13.  https://doi.org/10.1007/s11099-016-0643-6CrossRefGoogle Scholar
  37. 37.
    Wu Z, Yin X, Bañuelos GS, Lin Z-Q, Zhu Z, Liu Y, Yuan L, Li M (2016) Effect of selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Front Microbiol 6:1441.  https://doi.org/10.3389/fmicb.2015.01441CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289CrossRefGoogle Scholar
  39. 39.
    Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431.  https://doi.org/10.1007/s11356-015-5305-xCrossRefGoogle Scholar
  40. 40.
    Liu J, Cai H, Mei C, Wang M (2015) Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Front Environ Sci Eng 9(5):905–911.  https://doi.org/10.1007/s11783-015-0786-xCrossRefGoogle Scholar
  41. 41.
    Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci 4:46.  https://doi.org/10.3389/fenvs.2016.00046CrossRefGoogle Scholar
  42. 42.
    Alsaeedi AH, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Almohsen M (2017) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res 24(27):21917–21928CrossRefGoogle Scholar
  43. 43.
    Alsaeedi A, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Al-Otaibi A (2018) Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant Physiol Biochem 125:164–171PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Leopold FRA, Jan B-F, Regina MM, Fulvio U (2000) Selenium, the element of the Moon, in life on Earth. IUBMB Life 49:411–420CrossRefGoogle Scholar
  45. 45.
    El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy E, ElhawatN PJ, Sztrik A, Fari M, El-Marsafawy S, Shams MS (2015) Selenium in soils under climate change, implication for human health. Environ Chem Lett 13(1):1–19.  https://doi.org/10.1007/s10311-014-0480-4CrossRefGoogle Scholar
  46. 46.
    El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fari M, Pilon-Smits EA, Domokos-Szabolcsy E (2015) Selenium and its role in higher plants. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 7. Springer, Dordrecht, pp 235–296.  https://doi.org/10.1007/978-3-319-19276-5_6CrossRefGoogle Scholar
  47. 47.
    El-Ramady H, Abdalla N, Fari M, Domokos-Szabolcsy E (2014) Selenium enriched vegetables as biofortification alternative for alleviating micronutrient malnutrition. Int J Hortic Sci 20(1–2):75–81. ISSN 1585-0404Google Scholar
  48. 48.
    El-Ramady H, Domokos-Szabolcsy E, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fari M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12(4):495–510.  https://doi.org/10.1007/s10311-014-0476-0CrossRefGoogle Scholar
  49. 49.
    Koller LD, Exon JH (1986) The two faces of selenium-deficiency and toxicity—are similar in animals and man. Can J Vet Res 50:297–306PubMedPubMedCentralGoogle Scholar
  50. 50.
    Whanger P, Vendeland S, Park YC, Xia YM (1996) Metabolism of subtoxic levels of selenium in animals and humans. Ann Clin Lab Sci 26:99–113PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sakizadeh M, Sharafabadi FM, Shayegan E, Ghorbani H (2016) Concentrations and soil-to-plant transfer factor of selenium in soil and plant species from an arid area. IOP Conf Ser Earth Environ Sci 44:052027.  https://doi.org/10.1088/1755-1315/44/5/052027CrossRefGoogle Scholar
  52. 52.
    Andersson LO, Berg G (1969) Hydrolysis of disulfide bonds in weakly alkaline media I oxidized glutathione. Biochim Biophys Acta 192:534–536PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Li LS, Kim H, Rhee H, Kim SH, Shin DH, Chung KY, Park KS, Paik YK, Chang J (2004) Proteomic analysis distinguishes basaloid carcinoma as a distinct subtype of nonsmall cell lung carcinoma. Proteomics 4:3394–3400PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Nuttall KL, Allen FS (1984) Hydrogen selenide ion and colloidal selenium in the catalytic oxidation of thiols. Inorg Chim Acta 93:85CrossRefGoogle Scholar
  55. 55.
    Fourniere d’Albe EE (1925) The Moon-element. T. Fisher Unwin Ltd., LondonGoogle Scholar
  56. 56.
    Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plantatmosphere interfaces: a critical review. Nutrients 7:4199–4239.  https://doi.org/10.3390/nu7064199CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2016) Selenium and nano-selenium biofortified sprouts using micro-farm systems. In: Bañuelos GS, Lin Z-Q, Guilherme LRG, dos Reis AR (eds) Proceedings of the 4th international conference on selenium in the environment and human health, Sao Paulo, Brazil, 18–21 Oct 2015. CRC, Taylor & Francis Group, London, pp 189–190.  https://doi.org/10.13140/RG.2.1.1065.9925CrossRefGoogle Scholar
  58. 58.
    El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Domokos-Szabolcsy É, Pilon-Smits EA, Selmar D, Haneklaus S, Schnug E (2016) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14(1):123–147.  https://doi.org/10.1007/s10311-015-0535-1CrossRefGoogle Scholar
  59. 59.
    Li Z, Liang D, Peng Q, Cui Z, Lin Z (2017) Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma 295:69–79CrossRefGoogle Scholar
  60. 60.
    Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34(5):886–907PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tan Y, Yao R, Wang R, Wang D, Wang G, Zheng S (2016) Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Microb Cell Fact 15:157.  https://doi.org/10.1186/s12934-016-0554-zCrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Reeder RJ, Schoonen MAA, Lanzirotti A (2006) Metal speciation and its role in bioaccessibility and bioavailability. In: Sahai N, Schoonen MAA, Skinner HCW (eds) The emergent field of medical mineralogy and geochemistry. Mineralogical Society of America and the Geochemical Society, Tucson, AZ, pp 59–113CrossRefGoogle Scholar
  63. 63.
    Matos RP, Lima VMP, Windmöller CC, Nascentes CC (2017) Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil. J Geochem Explor 172:195–202CrossRefGoogle Scholar
  64. 64.
    Wang J, Li H, Yang L, Li Y, B Wei JY, Feng F (2017) Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin–Beck disease area. Environ Geochem Health 39:221–229.  https://doi.org/10.1007/s10653-016-9823-3CrossRefPubMedGoogle Scholar
  65. 65.
    Wang X, Zhang D, Pan X, Lee D-J, Gadd GM (2017) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273PubMedCrossRefGoogle Scholar
  66. 66.
    Cabanero AI, Madrid Y, Camara C (2007) Mercury–selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biol Trace Elem Res 119:195–211PubMedCrossRefGoogle Scholar
  67. 67.
    Yadav SK, Singh I, Sharma A, Singh D (2008) Selenium status in food grains of northern districts of India. J Environ Manage 88:770–774.  https://doi.org/10.1016/j.jenvman.2007.04.012CrossRefPubMedGoogle Scholar
  68. 68.
    Charya LS (2017) Selenium pollution in the marine environment and marine bacteria in selenium bioremediation. In: Naik MM, Dubey SK (eds) Marine pollution and microbial remediation. Springer, Singapore.  https://doi.org/10.1007/978-981-10-1044-6_14CrossRefGoogle Scholar
  69. 69.
    El-Ramady H, Domokos-Szabolcsy E, Shalaby TA, Prokisch J, Fari M (2015) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world, Vol. 5., CO2 sequestration, biofuels and depollution. Springer, Berlin, pp 153–232.  https://doi.org/10.1007/978-3-319-11906-9_5CrossRefGoogle Scholar
  70. 70.
    Sharma G, Jasuja ND, Kumar M, Ali MI (2015) Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis. J Nanotechnol 2015:1–6CrossRefGoogle Scholar
  71. 71.
    Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596.  https://doi.org/10.1111/nph.14378CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MFS, Faisal M, Pilon-Smits EAH (2015) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant and Soil 386:385–394.  https://doi.org/10.1007/s11104-014-2270-yCrossRefGoogle Scholar
  73. 73.
    Kabata-Pendias E (2011) Trace elements in soils and plants, 4th edn. CRC Press Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  74. 74.
    Di Gregorio S (2008) Selenium: a versatile trace element in life and environment. In: Prasad AS (ed) Trace elements in human health and disease, vol 2. Academic, New York, pp 593–622Google Scholar
  75. 75.
    Kroflič A, Germ M, Mechora Š, Stibilj V (2016) Selenium and its compounds in aquatic plant Veronica anagallis-aquatica. Chemosphere 151:296–302PubMedCrossRefGoogle Scholar
  76. 76.
    Pilon-Smits EAH (2015) Selenium in plants. In: Luettge U, Beyschlag W (eds) Progress in botany, vol 76. Springer International Publishing, Cham, pp 93–107.  https://doi.org/10.1007/978-3-319-08807-5_4CrossRefGoogle Scholar
  77. 77.
    Reilly C (2006) Selenium in food and health, 2nd edn. Springer, DodretchGoogle Scholar
  78. 78.
    Kapolna E, Fodor P (2006) Speciation analysis of selenium enriched green onions (Allium fistulosum) by HPLC–ICP-MS. Microchem J 84:56–62CrossRefGoogle Scholar
  79. 79.
    Bierla K, Szpunar J, Lobinski R (2016) Biological Selenium species and Selenium speciation in biological samples. In: Hatfield DL et al (eds) Selenium. Springer, New York, NY.  https://doi.org/10.1007/978-3-319-41283-2_35CrossRefGoogle Scholar
  80. 80.
    Liu X, Yang Y, Deng X, Li M, Zhao Z (2017) Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Environ Exp Bot 135:13–20CrossRefGoogle Scholar
  81. 81.
    Graham RR, Cragg LH (1960) The carbon family. The essentials of chemistry. Holt, Rinehart, and Winston, Inc., New York, NY, pp 408–423Google Scholar
  82. 82.
    Bowen HJ (1966) Trace elements in biochemistry. New York, NY, AcademicGoogle Scholar
  83. 83.
    Condie KC (1974). Abundance in igneous rocks and in the crust. In: Wedepohl KH (ed) Handbook geochemistry. 2. Springer, Berlin, pp. 14-E-l to 14-E-4.Google Scholar
  84. 84.
    Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer, Dordrecht.  https://doi.org/10.1007/978-94-017-9978-2CrossRefGoogle Scholar
  88. 88.
    Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. Adv Agron 58:151–199CrossRefGoogle Scholar
  91. 91.
    Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, pp 7–78Google Scholar
  92. 92.
    Lanning FC, Eleuterius LN (1989) Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Ann Bot 63:395–410CrossRefGoogle Scholar
  93. 93.
    Klotzbücher T, Marxen A, Jahn R, Vetterlein D (2016) Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake. Nutr Cycl Agroecosyst 105:157–168.  https://doi.org/10.1007/s10705-016-9782-1CrossRefGoogle Scholar
  94. 94.
    Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682CrossRefGoogle Scholar
  95. 95.
    Runge F (1999) The opal phytolith inventory of soils in central Africa — quantities, shapes, classification, and spectra. Rev Palaeobot Palynol 107:23–53CrossRefGoogle Scholar
  96. 96.
    Zhang X, Song Z, McGrouther K, Li J, Li Z, Ru N, Wang H (2016) The impact of different forest types on phytolith-occluded carbon accumulation in subtropical forest soils. J Soil Sediment 16:461–466.  https://doi.org/10.1007/s11368-015-1259-3CrossRefGoogle Scholar
  97. 97.
    Dal Corso M, Nicosia C, Balista C, Cupito M, Longa ED, Leonardi G, Kirleis W (2017) Bronze age crop processing evidence in the phytolith assemblages from the ditch and fen around Fondo Paviani, northern Italy. Veg Hist Archaeobotany 26:5–24.  https://doi.org/10.1007/s00334-016-0573-zCrossRefGoogle Scholar
  98. 98.
    Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecol Bull 35:469–476Google Scholar
  99. 99.
    Li Z, Song Z, Li B (2013) The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Appl Geochem 37:117–124CrossRefGoogle Scholar
  100. 100.
    Norris AR, Hackney CT (1999) Silica content of a mesohaline tidal marsh in North Carolina. Estuar Coast Shelf Sci 49:597–605CrossRefGoogle Scholar
  101. 101.
    Song Z, McGrouther K, Wang H (2016) Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth Sci Rev 158:19–30CrossRefGoogle Scholar
  102. 102.
    Keller C, Guntzer F, Barboni D, Labreuche J, Meunier J-D (2012) Impact of agriculture on the Si biogeochemical cycle: input from phytoliths studies. C R Geosci 344(11–12):739–746CrossRefGoogle Scholar
  103. 103.
    Song Z, Wang H, Strong PJ, Li Z, Jiang P (2012) Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: implications for biogeochemical carbon sequestration. Earth Sci Rev 115(4):319–331CrossRefGoogle Scholar
  104. 104.
    Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) The global biogeochemical silicon cycle. Silicon 1:207–213.  https://doi.org/10.1007/s12633-010-9035-xCrossRefGoogle Scholar
  105. 105.
    Hartmann J, Jansen N, Dürr HH, Harashima A, Okuba K, Kempe S (2009) Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of first-order controls. Int J Earth Sci.  https://doi.org/10.1007/s00531-008-0381-5CrossRefGoogle Scholar
  106. 106.
    Knoll MA, James WC (1987) Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15:1099–1102CrossRefGoogle Scholar
  107. 107.
    Penido ES, Bennett AJ, Hanson TE, Seyfferth AL (2016) Biogeochemical impacts of silicon-rich rice residue incorporation into flooded soils: implications for rice nutrition and cycling of arsenic. Plant and Soil 399:75–87.  https://doi.org/10.1007/s11104-015-2682-3CrossRefGoogle Scholar
  108. 108.
    Epstein E, Bloom AJ (2003) Mineral nutrition of plants: principles and perspectives, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  109. 109.
    Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  110. 110.
    Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472.  https://doi.org/10.1007/s13593-013-0194-1CrossRefGoogle Scholar
  111. 111.
    Jarvis SC (1987) The uptake and transport of silicon by perennial ryegrass and wheat. Plant and Soil 97:429–438CrossRefGoogle Scholar
  112. 112.
    Jones LHP, Handreck KA (1967) Silica in soils plants and animals. Adv Agron 19:107–149CrossRefGoogle Scholar
  113. 113.
    Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Takahashi E, Hino K (1978) Silica uptake by plant with special reference to the forms of dissolved silica. Jpn J Soil Sci Manure 49:357–360Google Scholar
  115. 115.
    Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2:99–122Google Scholar
  116. 116.
    Liang YC, Si J, Römheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus L. New Phytol 167:797–804.  https://doi.org/10.1111/j.1469-8137.2005.01463.xCrossRefPubMedGoogle Scholar
  117. 117.
    Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531CrossRefGoogle Scholar
  118. 118.
    Miyake Y, Takahashi E (1982) Effect of silicon on the growth of solution-cultured cucumber plants, Part 16. Comparative studies on silica nutrition in plants. Jpn J Soil Sci Plant Nutr 53:15–22Google Scholar
  119. 119.
    Miyake Y, Takahashi E (1982) Effect of silicon on the growth of solution-culutured cucumber plants, Part 17. Comparative studies on silica nutrition in plants. Jpn J Soil Sci Plant Nutr 53:23–29Google Scholar
  120. 120.
    Marxen A, Klotzbücher T, Jahn R, Kaiser K, Nguyen VS, Schmidt A, Schädler M, Vetterlein D (2016) Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant and Soil 398:153–163.  https://doi.org/10.1007/s11104-015-2645-8CrossRefGoogle Scholar
  121. 121.
    Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  122. 122.
    Shimoyama S (1958) Effect of calcium silicate application to rice plants on the alleviation of lodging and damage from strong gales. Studies in the improvement of ultimate yields of crops by the application of silicate materials. Jpn Assoc Adv Sci 56:57–99Google Scholar
  123. 123.
    Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon uptake and transport in plants: physiological and molecular aspects. In: Liang Y et al (eds) Silicon agriculture. Springer, Dordrecht, pp 69–82.  https://doi.org/10.1007/978-94-017-9978-2_4CrossRefGoogle Scholar
  124. 124.
    Gao XY, Zhang JS, Zhang LD (2002) Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv Mater 14:290–293CrossRefGoogle Scholar
  125. 125.
    White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937.  https://doi.org/10.1093/jxb/erh192CrossRefPubMedGoogle Scholar
  126. 126.
    Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med 35(7):805–813.  https://doi.org/10.1016/S0891-5849(03)00428-3CrossRefPubMedGoogle Scholar
  127. 127.
    Pelyhe C, Mézes M (2013) Myths and facts about the effects of nanoselenium in farm animals-mini review. Eur Chem Bull 2:1049–1052Google Scholar
  128. 128.
    Wang Q, Webster TJ (2013) Short communication: inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings. Int J Nanomedicine 8:407–411PubMedPubMedCentralGoogle Scholar
  129. 129.
    Amin KA, Hashem KS, Alshehri FS, Awad ST, Hassan MS (2017) Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biol Trace Elem Res 175:136–145.  https://doi.org/10.1007/s12011-016-0748-6CrossRefPubMedGoogle Scholar
  130. 130.
    Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100:2555–2566.  https://doi.org/10.1007/s00253-016-7300-7CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Nuttall KL (1985) Elemental selenium and glutathione reductase. Med Hypotheses 16:155–158PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci 101(1):22–31.  https://doi.org/10.1093/toxsci/kfm221CrossRefPubMedGoogle Scholar
  133. 133.
    Zhang L, Feng C, Chen Z et al (2008) Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett 8(8):2564–2569PubMedCrossRefGoogle Scholar
  134. 134.
    Peng D, Zhang J, Liu Q, Taylor EW (2007) Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101(10):1475–1563CrossRefGoogle Scholar
  135. 135.
    Prasad KS, Patel H, Patel T, Patel K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces 103:261–266. doi:10.1016/j. colsurfb.2012.10.029PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang J-S, Gao X-Y, Zhang L-D, Bao Y-P (2001) Biological effects of a nano red elemental selenium. Biofactors 15:27–38PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Chaudhary S, Umar A, Umar A, Mehta SK (2016) Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications. Progr Mater Sci 83:270–329.  https://doi.org/10.1016/j.pmatsci.2016.07.001CrossRefGoogle Scholar
  138. 138.
    Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol.  https://doi.org/10.1016/j.powtec.2013.03.050CrossRefGoogle Scholar
  139. 139.
    Bhattacharjee A, Basu A, Biswas J, Sen T, Bhattacharya S (2017) Chemoprotective and chemosensitizing properties of selenium nanoparticle (Nano-Se) during adjuvant therapy with cyclophosphamide in tumor-bearing mice. Mol Cell Biochem 424:13–33.  https://doi.org/10.1007/s11010-016-2839-2CrossRefPubMedGoogle Scholar
  140. 140.
    Bhattacharjee A, Basu A, Sen T, Biswas J, Bhattacharya S (2016) Nano-Se as a novel candidate in the management of oxidative stress related disorders and cancer. Nucleus.  https://doi.org/10.1007/s13237-016-0183-2CrossRefGoogle Scholar
  141. 141.
    Fu L, Yan X, Ruan X, Lin J, Wang Y (2014) Differential protein expression of Caco-2 cells treated with selenium nanoparticles compared with sodium selenite and selenomethionine. Nanoscale Res Lett 9:589PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G (2012) Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem 31:2812–2820PubMedCrossRefGoogle Scholar
  143. 143.
    Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210CrossRefGoogle Scholar
  144. 144.
    Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531CrossRefGoogle Scholar
  145. 145.
    Srivastava N, Mukhopadhyay M (2015) Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J Clust Sci.  https://doi.org/10.1007/s10876-014-0833-yCrossRefGoogle Scholar
  146. 146.
    Prasad KS, Vaghasiya JV, Soni SS, Patel J, Patel R, Kumari M, Jasmani F, Selvaraj K (2015) Microbial selenium nanoparticles (SeNPs) and their application as a sensitive hydrogen peroxide biosensor. Appl Biochem Biotechnol 177:1386–1393.  https://doi.org/10.1007/s12010-015-1814-9CrossRefPubMedGoogle Scholar
  147. 147.
    Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res A 100:3205–3210PubMedCrossRefGoogle Scholar
  148. 148.
    Kong L, Yuan Q, Zhu H, Li Y, Guo Q, Wang Q, Bi X, Gao X (2011) The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 32:6515–6522PubMedCrossRefGoogle Scholar
  149. 149.
    Gu Y, Cui R, Zhang Z, Xie Z, Pang D (2012) Ultra-small nearinfrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82PubMedCrossRefGoogle Scholar
  150. 150.
    Robel I, Subramanian V, Kuno M, Kamat PV (2006) Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128:2385–2393PubMedCrossRefGoogle Scholar
  151. 151.
    Niu Y, Qin A, Song W, Wang M, Gu X, Zhang Y, Yu M, Zhao X, Dai M, Yan L, Li Z, Fan Y (2012) Biocompatible single-crystal selenium nanobelt based nanodevice as a temperature-tunable photosensor. J Nanomater 2012:1–6Google Scholar
  152. 152.
    Zhang Y, Wang J, Zhang L (2010) Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 26(22):17617–17623.  https://doi.org/10.1021/la1033959CrossRefPubMedGoogle Scholar
  153. 153.
    Mastronardi E, Tsae P, Zhang X, Monreal C, De Rosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham, p 25.  https://doi.org/10.1007/978-3-319-14024-7_2CrossRefGoogle Scholar
  154. 154.
    Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils.  https://doi.org/10.1007/s00374-015-1039-7CrossRefGoogle Scholar
  155. 155.
    Servin A, Elmer W, Mukherjee A, De La Torre-Roche R, Hamdi H, White JC, Bindraban PS, Dimkpa CO (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92CrossRefGoogle Scholar
  156. 156.
    Domokos-Szabolcsy E (2011) Biological effect and fortification possibilities of inorganic selenium forms in higher plants. Ph.D. dissertation, Debrecen UniversityGoogle Scholar
  157. 157.
    Premarathna HL, McLaughlin MJ, Kirby Jason K, Hettiarachchi GM, Beak D, Stacey S, Chittleborough DJ (2010) Potential availability of fertilizer selenium in field capacity and submerged soils. Soil Sci Soc Am J 74:1589–1596.  https://doi.org/10.2136/sssaj2009.0416CrossRefGoogle Scholar
  158. 158.
    Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240.  https://doi.org/10.1016/j.scienta.2014.09.006CrossRefGoogle Scholar
  159. 159.
    Domokos-Szabolcsy E, Abdalla N, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Horti Sci 20(3–4):119–122Google Scholar
  160. 160.
    Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate anocomposites. Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  161. 161.
    Choi Y, Lee S, Ryu S (2009) Effect of silane functionalization of montmorillonite on epoxy/montmorillonitenano composite. Polym Bull 63:47–55CrossRefGoogle Scholar
  162. 162.
    Xanthos M (2005) Functional fillers for plastics. Wiley, WeinheimCrossRefGoogle Scholar
  163. 163.
    Aso O, Eguiazabal JI, Nazabal J (2007) The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Compos Sci Technol 67:2854–2863CrossRefGoogle Scholar
  164. 164.
    Abdelghany AM, Morsi MA, Abdelrazek A, Ahmed MT (2016) Role of silica nanoparticles on structural, optical and morphological properties of poly(vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) copolymer. Silicon.  https://doi.org/10.1007/s12633-016-9483-zCrossRefGoogle Scholar
  165. 165.
    Gharehbash N, Shakeri A (2015) Preparation and thermal and physical properties of nano-silica modified and unmodified. Orient J Chem 31:207–212.  https://doi.org/10.13005/ojc/31.Special-Issue1.25CrossRefGoogle Scholar
  166. 166.
    Parvinzadeh M, Moradian S, Rashidi A, Yazdanshenas ME (2010) Surface characterization of polyethylene terephthalate/silica nanocomposites. Appl Surf Sci 256:2792–2802CrossRefGoogle Scholar
  167. 167.
    Singh A, Singh S, Prasad SM (2017) Silicon and nanotechnology: role in agriculture and future perspectives. In: Tripathi DK, Singh VP, Ahmad P, Chauhan DK, Prasad SM (eds) Silicon in plants: advances and future prospects. Taylor & Francis Group, LLC, Boca Raton, FL, pp 101–116Google Scholar
  168. 168.
    Datnoff LE Snyder GH, Korndorfer GH (2001) Silicon in agriculture, studies in plant science, 8, Elsevier, New York, NY.CrossRefGoogle Scholar
  169. 169.
    Tubaña BS, Heckman JR (2015) Silicon in soils and plants. In: Rodrigues FA, Datnoff LE (eds) Silicon and plant diseases. Springer, Cham.  https://doi.org/10.1007/978-3-319-22930-0_2CrossRefGoogle Scholar
  170. 170.
    Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845.  https://doi.org/10.1007/s11356-014-3525-0CrossRefGoogle Scholar
  171. 171.
    Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227:228.  https://doi.org/10.1007/s11270-016-2928-6CrossRefGoogle Scholar
  172. 172.
    Tossi V, Lombardo C, Cassia R, Lamattina L (2012) Nitric oxide and flavonoids are systemically induced by UV-B in maize leaves. Plant Sci 193-194:103–109PubMedCrossRefGoogle Scholar
  173. 173.
    Singh VP, Kumar J, Singh S, Prasad SM (2014) Dimethoate modifies enhanced UV-B effects on growth, photosynthesis and oxidative stress in mung bean (Vigna radiata L.) seedlings: implication of salicylic acid. Pest Biochem Physiol 116:13–23CrossRefGoogle Scholar
  174. 174.
    Singh VP, Singh S, Kumar J, Prasad SM (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbateeglutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29PubMedCrossRefGoogle Scholar
  175. 175.
    Singh VP, Srivastava PK, Prasad SM (2013) Nitric oxide alleviates arsenic induced toxic effects in ridged Luffa seedlings. Plant Physiol Biochem 71:155–163PubMedCrossRefGoogle Scholar
  176. 176.
    Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135CrossRefGoogle Scholar
  177. 177.
    Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Liu C, Li F, Luo C, Liu X, Wang S, Liu T, Li X (2009) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161:1466–1472PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Yao X, Chu J, Cai K, Liu L, Shi J, Geng W (2011) Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biol Trace Elem Res 143:507–517PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Saf 113:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Xing W, Li D, Liu G (2010) Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure. Plant Physiol Biochem 48:873–878PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Genty B, Harbinson J, Briantais JM, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25:249–257PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Higashisaka K, Nagano K, Yoshioka Y, Tsutsumi Y (2017) Nano-safety research: examining the associations among the biological effects of nanoparticles and their physicochemical properties and kinetics. Biol Pharm Bull 40(3):243–248.  https://doi.org/10.1248/bpb.b16-00854CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7.  https://doi.org/10.4172/2157-7439.1000165CrossRefGoogle Scholar
  187. 187.
    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  188. 188.
    Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28CrossRefGoogle Scholar
  189. 189.
    Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci 209:40–48PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Bajaj M, Schmidt S, Winter J (2012) Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of north-east Punjab, India. Microb Cell Fact 11:64PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Prasad S, Selvaraj K (2014) Biogenic synthesis of selenium nanoparticles and their effect on as(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res 157:275–283PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Gaidhani S, Singh R, Singh D, Patel U, Shevade K, Yeshvekar R, Chopade BA (2013) Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus PUCM 1005. Mater Lett 108:324–327CrossRefGoogle Scholar
  193. 193.
    Gaidhani S, Yeshvekar RV, Shedbalkar US, Bellare JH, Chopade BA (2014) Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem 49:2313–2319CrossRefGoogle Scholar
  194. 194.
    Wadhwani S, Shedbalkar U, Singh R, Karve M, Chopade B (2014) Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of Acinetobacter spSW30. World J Microbiol Biotechnol 30:2723–2731PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Chen T, Wong Y, ZhengW BY, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerfaces 67:26–31PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA (2014) Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 9:2635–2653PubMedPubMedCentralGoogle Scholar
  197. 197.
    Nancharaiah YV, Lens PNL (2015) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Iranifam M, Fathinia M, Sadeghi T, Hanifehpour Y, Khataee A, Joo S (2013) A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta 107:263–269PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Overschelde O, Guisbiers G, Snyders R (2013) Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. Appl Mater 1:042114CrossRefGoogle Scholar
  200. 200.
    Quintana M, Haro-Poniatowski E, Morales J, Batina N (2002) Synthesis of selenium nanoparticles by pulsed laser ablation. Appl Surf Sci 195:175–186CrossRefGoogle Scholar
  201. 201.
    Hong Lin Z, Chu Lin F, Wang C (2004) Observation in the growth of selenium nanoparticles. J Chin Chem Soc 51:239–242CrossRefGoogle Scholar
  202. 202.
    Gerrard T, Telford J, Williams H (1974) Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacreriol 119:1057–1060Google Scholar
  203. 203.
    Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 10:3389–3401PubMedPubMedCentralGoogle Scholar
  204. 204.
    Forootanfara H, Zare B, Fasihi-Bam H, Amirpour-Rostami S, Ameri A, Shakibaie M, Torabi Nami M (2014) Biosynthesis and characterization of selenium nanoparticles produced by terrestrial actinomycete Streptomyces microflavus strain FSHJ31. Res Rev J Microbiol Biotechnol 3(1):47–53Google Scholar
  205. 205.
    Dobias J, Suvorova EI (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22:195605PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Oremland R, Herbe M, Blum J, Langley S, Beveridge T, Ajayan P, Sutto PT, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by se-respiring bacteria. Appl Environ Microbiol 70:52–60PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler C, Vallini G (2014) Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact 13:35PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Kazempour Z, Hossein M, Yazdi F, Shahverdi A (2013) Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iran J Microbiol 5:81–85PubMedPubMedCentralGoogle Scholar
  209. 209.
    Torres K, Campos V, Leon C, Rojas S, Guez-Llamazares S, Gonza’lez M, Smith C, MA M (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res:14–1236Google Scholar
  210. 210.
    Zhang J, Spallholz J (2011) Toxicity of selenium compounds and nanoselenium particles. Gen Appl Syst Toxicol.  https://doi.org/10.1002/9780470744307
  211. 211.
    Tam K, Ho C, Lee J, Lai M, Chang C, Rheem Y, Chen H, Hur N, Myung V (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Biosci Biotechnol Biochem 74:696–700PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Debieux C, Dridge E, Mueller C, Splatt P, Paszkiewicz K, Knight I, Florance R, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci 108:–13481CrossRefGoogle Scholar
  213. 213.
    Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740PubMedPubMedCentralGoogle Scholar
  214. 214.
    Bo Li D, Cheng Y, Wu C, Li W, Li N, Yang Z, Tong Z, Yu H (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735Google Scholar
  215. 215.
    Biswas K, Barton L, Tsui W, Shuman K, Gillespie J, Eze C (2011) A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods 86:140–144PubMedCrossRefGoogle Scholar
  216. 216.
    Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204CrossRefGoogle Scholar
  217. 217.
    Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241CrossRefGoogle Scholar
  218. 218.
    Shakibaie M, Khorramizadeh M, Faramarzi M, Sabzevari O, Shahverdi A (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 15:7–15CrossRefGoogle Scholar
  219. 219.
    Dhanjal S, Cameotra S (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Yazdi M, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi A (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form ofmouse breast cancer. DARU J Pharm Sci 21:33CrossRefGoogle Scholar
  221. 221.
    Moghaddam AB, Namvar F, Moniri M, Tahir PM, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565.  https://doi.org/10.3390/molecules200916540CrossRefGoogle Scholar
  222. 222.
    Gharieb M, Wilkinson S, Gadd G (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14:300–311CrossRefGoogle Scholar
  223. 223.
    Zhou H, Fan T, Zhang D (2011) Biotemplated materials for sustainable energy and environment: current status and challenges. Chem Sustain Chem 4(10):1344–1387CrossRefGoogle Scholar
  224. 224.
    Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  225. 225.
    Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925):841–843PubMedCrossRefGoogle Scholar
  226. 226.
    Losic D, Short K, Mitchell JG, Lal R, Voelcker NH (2007) AFM nanoindentations of diatom biosilica surfaces. Langmuir 23(9):5014–5021PubMedCrossRefGoogle Scholar
  227. 227.
    Losic D, Rosengarten G, Mitchell JG, Voelcker NH (2006a) Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J Nanosci Nanotechnol 6(4):982–989PubMedCrossRefGoogle Scholar
  228. 228.
    De Stefano L, Rea I, Rendina I, De Stefano M, Moretti L (2007) Lensless light focusing with the centric marinediatom Coscinodiscus walesii. Opt Express 15(26):18082–18088PubMedCrossRefGoogle Scholar
  229. 229.
    Fuhrmann T, Landwehr S, El-Rharbi-Kucki M, Sumper M (2004) Diatoms as living photonic crystals. Appl. Phys. Appl Phys B Lasers O 78(3–4):257–260CrossRefGoogle Scholar
  230. 230.
    Lettieri S, Setaro A, De Stefano L, De Stefano M, Maddalena P (2008) The gas-detection properties of light-emitting diatoms. Adv Funct Mater 18(8):1257–1264CrossRefGoogle Scholar
  231. 231.
    Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21(29):2947–2958CrossRefGoogle Scholar
  232. 232.
    Yang W, Lopez PJ, Rosengarten G (2011) Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136(1):42–53PubMedCrossRefGoogle Scholar
  233. 233.
    Aw MS, Simovic S, Yu Y, Addai-Mensah J, Losic D (2012) Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol 223:52–58CrossRefGoogle Scholar
  234. 234.
    Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27(2):116–127PubMedCrossRefGoogle Scholar
  235. 235.
    Losic D, Yu Y, Aw MS, Simovic S, Thierry B, Addai-Mensah J (2010) Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem Commun 46(34):6323–6325CrossRefGoogle Scholar
  236. 236.
    Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energ Environ Sci 4(10):3930–3941CrossRefGoogle Scholar
  237. 237.
    Gale DK, Gutu T, Jiao J, Chang C-H, Rorrer GL (2009) Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv FunctMater 19(6):926–933CrossRefGoogle Scholar
  238. 238.
    Lin K-C, Kunduru V, Bothara M, Rege K, Prasad S, Ramakrishna BL (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens Bioelectron 25(10):2336–2342PubMedCrossRefGoogle Scholar
  239. 239.
    De Stefano L, Rotiroti L, De Stefano M, Lamberti A, Lettieri S, Setaro A, Maddalena P (2009) Marine diatoms as optical biosensors. Biosens Bioelectron 24(6):1580–1584PubMedCrossRefGoogle Scholar
  240. 240.
    Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440CrossRefGoogle Scholar
  241. 241.
    Holzhüter G, Narayanan K, Gerber T (2003) Structure of silica in Equisetum arvense. Anal Bioanal Chem 376:512–517PubMedCrossRefGoogle Scholar
  242. 242.
    Kaufman PB, Bigelow WC, Schmid R, Ghosheh NS (1971) Electron microprobe analysis of silica in epidermal cells of Equisetum. Am J Bot 58:309–316CrossRefGoogle Scholar
  243. 243.
    Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327PubMedCrossRefGoogle Scholar
  244. 244.
    Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 26:2583–2589CrossRefGoogle Scholar
  245. 245.
    Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236.  https://doi.org/10.1080/13102818.2015.1008194PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Sastry M, Ahmad A, Islam Khan M, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  247. 247.
    Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48PubMedCrossRefGoogle Scholar
  248. 248.
    Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250CrossRefGoogle Scholar
  249. 249.
    Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  250. 250.
    Durán N, Marcato PD, Alves OL, de Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3.  https://doi.org/10.1186/1477-3155-3-8PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hassan El-Ramady
    • 1
  • Tarek Alshaal
    • 1
    • 2
  • Nevien Elhawat
    • 2
    • 3
  • Eman El-Nahrawy
    • 4
  • Alaa El-Dein Omara
    • 4
  • Sahar El-Nahrawy
    • 4
  • Tamer Elsakhawy
    • 4
  • Azza Ghazi
    • 4
  • Neama Abdalla
    • 5
  • Miklós Fári
    • 2
  1. 1.Faculty of Agriculture, Soil and Water DepartmentKafrelsheikh UniversityKafr El-SheikhEgypt
  2. 2.Agricultural Botanic, Plant Physiology and Biotechnology DepartmentUniversity of DebrecenDebrecenHungary
  3. 3.Faculty of Home Economic, Department of Biological and Environmental SciencesAl-Azhar UniversityCairoEgypt
  4. 4.Agricultural Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research StationAgriculture Research Center (ARC)Kafr El-SheikhEgypt
  5. 5.Genetic Engineering Division, Plant Biotechnology DepartmentNational Research CenterGizaEgypt

Personalised recommendations