Advertisement

A Hybrid Ensemble of Heterogeneous Regressors for Wind Speed Estimation in Wind Farms

  • L. Cornejo-Bueno
  • J. Acevedo-Rodríguez
  • L. Prieto
  • S. Salcedo-Sanz
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 798)

Abstract

This paper focuses on a problem of wind speed estimation in wind farms by proposing an ensemble of regressors in which the output of four different systems (Neural Networks (NNs), Suppor Vector Regressors (SVRs) and Gaussian Processes (GPRs)) will be the input of a final prediction system (An Extreme Learning Machine (ELM) in this case). Moreover, we propose to use variables from atmospheric reanalysis data as predictive inputs for the systems, which gives us the possibility of hybridizing numerical weather models with ML techniques for wind speed prediction in real systems. The experimental evaluation of the proposed system in real data from a wind farm in Spain has been carried out, with the subsequent discussion about the performance of the different ML regressors and the ensemble method tested in this wind speed prediction problem.

Notes

Acknowledgements

This work has been partially supported by Comunidad de Madrid, under project number S2013/ICE-2933, and by project TIN2014-54583-C2-2-R of the Spanish Ministerial Commission of Science and Technology (MICYT).

References

  1. 1.
    Kumar, Y., Ringenberg, J., Depuru, S.S., Devabhaktuni, V.K., Lee, J.W., Nikolaidis, E., Andersen, B., Afjeh, A.: Wind energy: trends and enabling technologies. Renew. Sustain. Energy Rev. 53, 209–224 (2016)CrossRefGoogle Scholar
  2. 2.
    Yan, J., Liu, Y., Han, S., Wang, Y., Feng, S.: Reviews on uncertainty analysis of wind power forecasting. Renew. Sustain. Energy Rev. 52, 1322–1330 (2015)CrossRefGoogle Scholar
  3. 3.
    Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E.: A review on the young history of the wind power short-term prediction. Renew. Sustain. Energy Rev. 12, 1725–1744 (2008)CrossRefGoogle Scholar
  4. 4.
    Salcedo-Sanz, S., Pérez-Bellido, Á.M., Ortiz-García, E.G., Portilla-Figueras, A., Prieto, L., Paredes, D.: Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renew. Energy 34(6), 1451–1457 (2009)CrossRefGoogle Scholar
  5. 5.
    Feng, C., Cui, M., Hodge, B.M., Zhang, J.: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Appl. Energy 190, 1245–1257 (2017)CrossRefGoogle Scholar
  6. 6.
    Bilgili, M., Sahin, B., Yasar, A.: Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 32, 2350–2360 (2007)CrossRefGoogle Scholar
  7. 7.
    Monfared, M., Rastegar, H., Kojabadi, H.M.: A new strategy for wind speed forecasting using artificial intelligent methods. Renew. Energy 34(3), 845–848 (2009)CrossRefGoogle Scholar
  8. 8.
    Salcedo-Sanz, S., Ortiz-Garcá, E.G., Pérez-Bellido, A.M., Portilla-Figueras, A., Prieto, L.: Short term wind speed prediction based on evolutionary support vector regression algorithms. Expert Syst. Appl. 38(4), 4052–4057 (2011)CrossRefGoogle Scholar
  9. 9.
    Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A.: Support vector machines for wind speed prediction. Renew. Energy 29(6), 939–947 (2004)CrossRefGoogle Scholar
  10. 10.
    Kusiak, A., Zheng, H., Song, Z.: Wind farm power prediction: a data-mining approach. Wind Energy 12(3), 275–293 (2009)CrossRefGoogle Scholar
  11. 11.
    Salcedo-Sanz, S., Perez-Bellido, A.M., Ortiz-GarcÃa, E.G., Portilla-Figueras, A., Prieto, L., Correoso, F.: Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 72, 1336–1341 (2009)CrossRefGoogle Scholar
  12. 12.
    Ortiz-García, E.G., Salcedo-Sanz, S., Pérez-Bellido, A.M., Gascón-Moreno, J., Portilla-Figueras, A., Prieto, L.: Short-term wind speed prediction in wind farms based on banks of support vector machines. Wind Energy 14(2), 193–207 (2011)CrossRefGoogle Scholar
  13. 13.
    Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., Blanco-Aguilera, A., García-Herrera, R.: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization-extreme learning machine approach. Energy Convers. Manage. 87, 10–18 (2014)CrossRefGoogle Scholar
  14. 14.
    Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P.: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 137, 553–597 (2011)CrossRefGoogle Scholar
  15. 15.
    Smola, A.J., Schölkopf, B.B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Salcedo-Sanz, S., Rojo, J.L., Martínez-Ramón, M., Camps-Valls, G.: Support vector machines in engineering: an overview. WIREs Data-Mining Knowl. Discov. 4(3), 234–267 (2014)CrossRefGoogle Scholar
  17. 17.
    Haykin, S.: Neural Networks: A Comprenhensive Foundation. Prentice Hall, Upper Saddle River (1998)Google Scholar
  18. 18.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  19. 19.
    Hagan, M.T., Menhaj, M.B.: Training feed forward network with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)CrossRefGoogle Scholar
  20. 20.
    Huang, G.B., Zhu, Q.Y.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRefGoogle Scholar
  21. 21.
    Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)CrossRefGoogle Scholar
  22. 22.
    Rasmussen, C.E., Williams, K.H.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  23. 23.
    Lázaro-Gredilla, M., van Vaerenbergh, S., Lawrence, N.: Overlapping mixtures of gaussian processes for the data association problem. Pattern Recogn. 45(4), 1386–1395 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • L. Cornejo-Bueno
    • 1
  • J. Acevedo-Rodríguez
    • 1
  • L. Prieto
    • 1
  • S. Salcedo-Sanz
    • 1
  1. 1.Department of Signal Processing and CommunicationsUniversidad de AlcaláMadridSpain

Personalised recommendations