Programmed Physical Activity for the Elderly as a Motor of Active Ageing

  • Galo SánchezEmail author
  • Valeria Lobina
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)


Our population is ageing, and this makes it necessary to implement initiatives that encourage sports activities among people over the age of 65. According to the concept of active ageing, keeping this age group active will allow to improve its health. This research aims to create an ageing model. To this end, we developed a platform for the capture of data and used it to conduct our study. To validate the proposed hypotheses, we examined the correlation between the data captured by the platform with medical data.


Active ageing e-health 


  1. 1.
    Barrio Aliste, J.M.: De los problemas a los retos de la población rural de Castilla y León. Encrucijadas, Revista crítica de Ciencias Sociales 6, 117–128 (2013)Google Scholar
  2. 2.
    Gómez-Limón Rodríguez, J.A., Atance Muñiz, I., Rico González, M.: Percepción pública del problema de la despoblación del medio rural en Castilla y León. Ager, Revista de estudios sobre despoblación y desarrollo rural 6, 9–60 (2007)Google Scholar
  3. 3.
    Guillén García, F., Castro Sánchez, J.J., Guillén García, M.A.: Calidad de vida, salud y ejercicio físico: una aproximación al tema desde una perspectiva psicosocial. Revista Psicología del deporte 12, 91–110 (1997)Google Scholar
  4. 4.
    López Fernández, F.J.: Acción social en España. Centros, servicios y establecimientos de servicios sociales. ACCI, Madrid (2014)Google Scholar
  5. 5.
    Martínez de Haro, V. (coord.): Actividad física, salud y calidad de vida. UAM, Fundación Estudiantes, Madrid (2010)Google Scholar
  6. 6.
    OMS (ed.): Active Ageing: A Policy Framework. Organización Mundial de la Salud (2002). Recuperado 18 Feb 2018
  7. 7.
    VVAA: Plan Integral para la actividad física y el deporte en personas mayores. Ministerio de Cultura (2009)Google Scholar
  8. 8.
    VVAA: Libro blanco del envejecimiento activo. CSD, Ministerio de Educación y Cultura (2010)Google Scholar
  9. 9.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016). Scholar
  10. 10.
    Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015). Scholar
  11. 11.
    Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., Maestro De Las Casas, M.L., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: A cluster analysis. BioMed Res. Int. (2015). Scholar
  12. 12.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: FUSION 2014 - 17th International Conference on Information Fusion (2014).
  13. 13.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Omatu, S., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS ONE 9(7) (2014). Scholar
  14. 14.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014).
  15. 15.
    García Coria, J.A., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 PART 1), 1189–1205 (2014). Scholar
  16. 16.
    Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for Ambient Intelligence systems. Inf. Sci. 222, 47–65 (2013). Scholar
  17. 17.
    Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Log. J. IGPL 20(4), 689–698 (2012). Scholar
  18. 18.
    García, E., Rodríguez, S., Martín, B., Zato, C., Pérez, B.: MISIA: middleware infrastructure to simulate intelligent agents. In: Advances in Intelligent and Soft Computing, vol. 91 (2011). Scholar
  19. 19.
    Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (LNAI), vol. 6077 (2010). Scholar
  20. 20.
    Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: Proceedings of INES 2010 - 14th International Conference on Intelligent Engineering Systems (2010).
  21. 21.
    Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010). Scholar
  22. 22.
    Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient. Comput. Intell 1(1), 15–26 (2009). Scholar
  23. 23.
    Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009). Scholar
  24. 24.
    Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10 (2009). Scholar
  25. 25.
    Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a Fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007). Scholar
  26. 26.
    Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (LNAI), vol. 4065, pp. 106–120 (2006). Scholar
  27. 27.
    Fdez-Rtverola, F., Corchado, J.M.: FSfRT: forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004). Scholar
  28. 28.
    Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3155, pp. 547–559 (2004).
  29. 29.
    Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the Ocean’s CO2 budget with a CoHeL-IBR system. In: Proceedings of Advances in Case-Based Reasoning, vol. 3155, pp. 533–546 (2004)Google Scholar
  30. 30.
    Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004). Scholar
  31. 31.
    Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood hebbian learning based retrieval method for CBR systems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2689, pp. 107–121 (2003).
  32. 32.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl.-Based Syst. 16(5–6 SPEC.), 321–328 (2003). Scholar
  33. 33.
    Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3), 173–185 (2002)Google Scholar
  34. 34.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(4), 307–313 (2002). Scholar
  35. 35.
    Fyfe, C., Corchado, J.: A comparison of Kernel methods for instantiating case based reasoning systems. Adv. Eng. Inform. 16(3), 165–178 (2002). Scholar
  36. 36.
    Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001). Scholar
  37. 37.
    Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artif. Intell. Eng. 13(4), 351–357 (1999). Scholar
  38. 38.
    Corchado, J., Fyfe, C., Lees, B.: Unsupervised learning for financial forecasting. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No. 98TH8367), pp. 259–263 (1998).
  39. 39.
    Li, T.-C., Su, J.-Y., Liu, W., Corchado, J.M.: Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electron. Eng. 18(12), 1913–1939 (2017)CrossRefGoogle Scholar
  40. 40.
    Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sens. (Switz.) 17(12) (2017). Article No. 2707CrossRefGoogle Scholar
  41. 41.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl. Based Syst. 137, 54–64 (2017)CrossRefGoogle Scholar
  42. 42.
    Pinto, T., Gazafroudi, A.S., Prieto-Castrillo, F., Santos, G., Silva, F., Corchado, J.M., Vale, Z.: Reserve costs allocation model for energy and reserve market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017 (2017). Article No. 8071410Google Scholar
  43. 43.
    Lim, S.Y., Mohamad, M.S., Chai, L.E., Deris, S., Chan, W.H., Omatu, S., Corchado, J.M., Sjaugi, M.F., Zainuddin, M.M., Rajamohan, G., Ibrahim, Z., Yusof, Z.M.: Investigation of the effects of imputation methods for gene regulatory networks modelling using dynamic bayesian networks. In: DCAI 2016, pp. 413–421 (2016)CrossRefGoogle Scholar
  44. 44.
    Fernandes, F., Gomes, L., Morais, H., Silva, M.R., Vale, Z.A., Corchado, J.M.: Dynamic energy management method with demand response interaction applied in an office building. In: PAAMS (Special Sessions), pp. 69–82 (2016)Google Scholar
  45. 45.
    Dang, N.C., de la Prieta, F., Corchado, J.M., Moreno, M.N.: Framework for retrieving relevant contents related to fashion from online social network data. In: PAAMS (Special Sessions), pp. 335–347 (2016)Google Scholar
  46. 46.
    Chamoso, P., de la Prieta, F., de Paz, J.F., Corchado, J.M.: Swarm agent-based architecture suitable for internet of things and smartcities. In: DCA 2015, pp. 21–29 (2015)CrossRefGoogle Scholar
  47. 47.
    Omatu, S., Wada, T., Rodríguez, S., Chamoso, P., Corchado, J.M.: Multi-agent technology to perform odor classification. In: ISAmI 2014, pp. 241–252 (2014)Google Scholar
  48. 48.
    Román, J.Á., Rodríguez, S., Corchado, J.M.: Improving intelligent systems: specialization. In: PAAMS (Workshops), pp. 378–385 (2014)Google Scholar
  49. 49.
    Tapia, D.I., García, Ó., Alonso, R.S., Guevara, F., Catalina, J., Bravo, R.A., Corchado, J.M.: Evaluating the n-core polaris real-time locating system in an indoor environment. In: PAAMS (Workshops), pp. 29–37 (2012)Google Scholar
  50. 50.
    Tapia, D.I., Alonso, R.S., García, Ó., Corchado, J.M.: HERA: hardware-embedded reactive agents platform. In: PAAMS (Special Sessions), pp. 249–256 (2011)Google Scholar
  51. 51.
    Batista, Vivian Fad López Aguilar, R., Alonso, L., García, María Nand Moreno Corchado, J.M.: Data mining for grammatical inference with bioinformatics criteria. In: HAIS (2), pp. 53–60 (2010)Google Scholar
  52. 52.
    Mata, A., Lancho, B.P., Corchado, J.M.: Forest fires prediction by an organization based system. In: PAAMS, pp. 135–144 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.E.U. Magisterio de Zamora, Universidad de SalamancaZamoraSpain

Personalised recommendations