Advertisement

New Approach to Power System Grid Security with a Blockchain-Based Model

  • Roberto Casado-Vara
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)

Abstract

There are many power system grid carrying energy from power plants to consumer. In order to manage these huge grid are all monitored by WSN and controlled by a large cluster of computers. However, the problem is how to ensure that all the data transmitted by the grid is authentic and has not been modified in any way. This paper presents a model for increasing communication security in the power system grid. For this purpose, blockchain is used to store all communication data, blockchain is distributed, secure and reliable. The main goal is that information is protected in the blockchain against modification attempts. In addition, power source can be authenticated and tracked from the consumer to the source.

Keywords

Power system Grid Blockchain Track Authenticate 

Notes

Acknowledgments

This paper has been funded by the European Regional Development Fund (FEDER) within the framework of the Interreg program V-A Spain-Portugal 2014-2020 (PocTep) grant agreement No 0123_IOTEC_3_E (project IOTEC).

References

  1. 1.
    Coria, J.A.G., Castellanos-Garzon, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 PART 1), 1189–1205 (2016).  https://doi.org/10.1016/j.eswa.2013.08.003CrossRefGoogle Scholar
  2. 2.
    Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for ambient intelligence systems. Inf. Sci. 222, 47–65 (2013).  https://doi.org/10.1016/j.ins.2011.05.002CrossRefGoogle Scholar
  3. 3.
    Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Logic J. IGPL 20(4), 689–698 (2012).  https://doi.org/10.1093/jigpal/jzr021MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 6077 (2010)Google Scholar
  5. 5.
    Durik, B.O.: Organisational metamodel for large-scale multi-agent systems: first steps towards modelling organisation dynamics. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ), 6(3), 17 (2017)CrossRefGoogle Scholar
  6. 6.
    Becerra-Bonache, L., Lopez, M.D.J.: Linguistic models at the crossroads of agents, learning and formal languages. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 3(4), 67 (2014)CrossRefGoogle Scholar
  7. 7.
    Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings (2010).  https://doi.org/10.1109/INES.2010.5483855
  8. 8.
    Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010).  https://doi.org/10.1016/j.ins.2009.12.032CrossRefGoogle Scholar
  9. 9.
    Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for Alzheimer health care. Int. J. Ambient. Comput. Intell. 1(1), 15–26 (2009).  https://doi.org/10.4018/jaci.2009010102CrossRefGoogle Scholar
  10. 10.
    Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009).  https://doi.org/10.1016/j.eswa.2008.10.003CrossRefGoogle Scholar
  11. 11.
    Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10 (2009).  https://doi.org/10.1186/1471-2105-10-187CrossRefGoogle Scholar
  12. 12.
    Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a Fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007).  https://doi.org/10.1109/TSMCC.2006.876058CrossRefGoogle Scholar
  13. 13.
    Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 4065, pp. 106–120 (2006)CrossRefGoogle Scholar
  14. 14.
    Méndez, J.R., Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Corchado, J.M.: Tracking concept drift at feature selection stage in SpamHunting: an anti-spam instance-based reasoning system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 4106, pp. 504–518 (2006)Google Scholar
  15. 15.
    Fdez-Rtverola, F., Corchado, J.M.: FSfRT: forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004).  https://doi.org/10.1023/B:APIN.0000043558.52701.b1CrossRefGoogle Scholar
  16. 16.
    Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3155, pp. 547–559 (2004).  https://doi.org/10.1007/978-3-540-28631-8
  17. 17.
    Laza, R., Pavn, R., Corchado, J.M.: A reasoning model for CBR-BDI agents using an adaptable fuzzy inference system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3040, pp. 96–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the Ocean’s CO2 budget with a CoHeL-IBR system. In: Advances in Case-Based Reasoning, Proceedings, vol. 3155, pp. 533–546 (2004)Google Scholar
  19. 19.
    Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004)Google Scholar
  20. 20.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Signal Process. 119, 115–127 (2016).  https://doi.org/10.1016/j.sigpro.2015.07.013CrossRefGoogle Scholar
  21. 21.
    Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015).  https://doi.org/10.1016/j.amc.2015.08.059CrossRefGoogle Scholar
  22. 22.
    Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., Maestro De Las Casas, M.L., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed Res. Int. (2015).  https://doi.org/10.1155/2015/168682CrossRefGoogle Scholar
  23. 23.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: FUSION 2014 - 17th International Conference on Information Fusion (2014)Google Scholar
  24. 24.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS ONE 9(7) (2014).  https://doi.org/10.1371/journal.pone.0102744CrossRefGoogle Scholar
  25. 25.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014)Google Scholar
  26. 26.
    Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood hebbian learning based retrieval method for CBR systems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2689, pp. 107–121 (2014)Google Scholar
  27. 27.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl. Based Syst. 16(5–6), 321–328 (2003).  https://doi.org/10.1016/S0950-7051(03)00034-0CrossRefGoogle Scholar
  28. 28.
    Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3), 173 (2002)Google Scholar
  29. 29.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(4), 307–313 (2002).  https://doi.org/10.1109/tsmcc.2002.806072CrossRefGoogle Scholar
  30. 30.
    Fyfe, C., Corchado, J.: A comparison of Kernel methods for instantiating case based reasoning systems. Adv. Eng. Inform. 16(3), 165–178 (2002).  https://doi.org/10.1016/S1474-0346(02)00008-3CrossRefGoogle Scholar
  31. 31.
    Casado-Vara, R., Prieto-Castrillo, F., Corchado, J.M.: A game theory approach for cooperative control to improve data quality and false data detection in WSN. Int. J. Robust Nonlinear ControlGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BISITE Digital Innovation HubUniversity of Salamanca, Edificio Multiusos I+D+iSalamancaSpain

Personalised recommendations