Automatic Screening of Glaucomatous Optic Papilla Based on Smartphone Images and Patient’s Anamnesis Data

  • Jose Carlos Raposo da Camara
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)


Glaucoma can cause irreversible damage to the optic nerve and lead to blindness. Current treatments can prevent vision loss if lesion are detected in early stages. Our research proposal has as main goal the development of a system for automatic screening of glaucomatous excavation in the optic nerve based on images obtained by cellular associated to patient’s anamnesis data. The system uses a multi-agent approach in order to combine the results of different detection algorithms and other data related to glaucomatous disease risk factors. It is expected that the system is able to assist professionals with less experience and in distant places or places with little technical availability to screen and monitor the progression of the loss of fibers of the optic disc and thus expedite the diagnosis and treatment.


Glaucoma screening Smartphone Multi-agents 


  1. 1.
    Lassen-Schmidt, B.C., Kuhnigk, J.-M., Konrad, O., van Ginneken, B., van Rikxoort, E.M.: Automatic and interactive segmentation of pulmonary lobes and nodules in chest CT images. Inst. Phys. Eng. Med. Phys. Med. Biol. 62 (2017)CrossRefGoogle Scholar
  2. 2.
    GeethaRamani, R., Dhanapackiam, C.: Automatic localization and segmentation of optic disc in retinal fundus images through image processing techniques. In: 2014 International Conference on Recent Trends in Information Technology, pp. 1–5 (2014)Google Scholar
  3. 3.
    Claro, M., Santos, L., Silva, W., Araújo, F., Santana, A.D.A.: Automatic detection of glaucoma using disc optic segmentation and feature extraction. In: Proceedings of 2015 41st Latin American Computing Conference, CLEI 2015 (2015)Google Scholar
  4. 4.
    Viquez, K.D.C., Arandjelovic, O., Blaikie, A., Hwang, I.A.: Synthesising wider field images from narrow-field retinal video acquired using a low-cost direct ophthalmoscope (Arclight) attached to a smartphone. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 90–98 (2017)Google Scholar
  5. 5.
    Aquino, A., Gegúndez-Arias, M.E., Marín, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29(11), 1860–1869 (2010)CrossRefGoogle Scholar
  6. 6.
    Thakkar, K., Chauhan, K., Sudhalkar, A., Gulati, R., Ophthalmologist, M.S.: Detection of glaucoma from retinal fundus images by analysing ISNT measurement and features of optic cup and blood vessels. Int. J. Eng. Technol. Sci. Res. IJETSR 4(7), 2394–3386 (2017). ISSN
  7. 7.
    Wong, D.W.K., et al.: Intelligent fusion of cup-to-disc ratio determination methods for glaucoma detection in ARGALI. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5777–5780 (2009)Google Scholar
  8. 8.
    Joshi, G.D., Sivaswamy, J., Krishnadas, S.R.: Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans. Med. Imaging 30(6), 1192–1205 (2011)CrossRefGoogle Scholar
  9. 9.
    Santos, L.M., Araújo, F.H.D., Claro, M.L., Silva, W.L., Silva, R.R.V., Drumond, P.M.L.L.: Implementação e Comparação de um Método de Detecção e Segmentação Automática do Disco Óptico em Diferentes Bases de Imagens da Retina. In: XII Simpósio Brasileiro de Automação Inteligente (XII SBAI) (2015)Google Scholar
  10. 10.
    Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, pp. 140–148 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidade AbertaLisbonPortugal

Personalised recommendations