Virtual Organization for Fintech Management

  • Elena Hernández
  • Angélica González
  • Belén Pérez
  • Ana de Luis Reboredo
  • Sara RodríguezEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)


A review of the state of the art on Fintech and the most important innovations in the financial technology is presented in this article. It is proposed a social computing platform based on VOs which allow to improve user experience in all that is associated with the process of investment recommendation. Moreover, a case study is shown in which the VOs modules have been described graphically, the agent functionalities have been explain and the algorithms responsible for making recommendation have been proposed.


Fintech Digitalization Virtual organization of agents Recommender system 



This work was supported by the Spanish Ministry of Economy and FEDER funds. Project “SURF: Intelligent System for integrated and sustainable management of urban fleets” with ID: TIN2015-65515-C4-3-R.


  1. 1.
    Abdou, H.A., Pointon, J., El-Masry, A., Olugbode, M., Lister, R.J.: A variable impact neural network analysis of dividend policies and share prices of transportation and related companies. J. Int. Financ. Markets Inst. Money 22(4), 796–813 (2012)CrossRefGoogle Scholar
  2. 2.
    Arner, D.W., Barberis, J., Buckley, R.P.: The evolution of Fintech: a new post-crisis paradigm. Geo. J. Int. 47, 1271–1319 (2015)Google Scholar
  3. 3.
    Avital, M., Andersson, M., Nickerson, J., Sundararajan, A., Van Alstyne, M., Verhoeven, D.: The collaborative economy: a disruptive innovation or much ado about nothing? In: Proceedings of the 35th International Conference on Information Systems ICIS. Association for Information Systems. AIS Electronic Library (AISeL), pp. 1–7 (2014)Google Scholar
  4. 4.
    Bach, K.: Knowledge Engineering for distributed case-based reasoning systems. In: Synergies Between Knowledge Engineering and Software Engineering, pp. 129–147. Springer, Cham (2018)Google Scholar
  5. 5.
    Bajo, J., De la Prieta, F., Corchado, J.M., Rodríguez, S.: A low-level resource allocation in an agent-based cloud computing platform. Appl. Soft Comput. 48, 716–728 (2016)CrossRefGoogle Scholar
  6. 6.
    Chamoso, P., Rivas, A., Rodríguez, S., Bajo, J.: Relationship recommender system in a business and employment-oriented social network. Inf. Sci. 204–220 (2017)CrossRefGoogle Scholar
  7. 7.
    Corchado, J.M., Lees, B.: Adaptation of cases for case based forecasting with neural network support. In: Soft Computing in Case Based Reasoning, pp. 293–319. Springer, London (2001)CrossRefGoogle Scholar
  8. 8.
    Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.: Intelligent environment for monitoring alzheimer patients, agent technology for health care. Decis. Supp. Syst. 34(2), 382–396 (2008). ISSN 0167-9236CrossRefGoogle Scholar
  9. 9.
    Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning technology. Int. J. Intell. Syst. 18(12), 1227–1241 (2003)CrossRefGoogle Scholar
  10. 10.
    De Paz, J.F., Bajo, J., González, A., Rodríguez, S., Corchado, J.M.: Combining case-based reasoning systems and support vector regression to evaluate the atmosphere–ocean interaction. Knowl. Inf. Syst. 30(1), 155–177 (2012)CrossRefGoogle Scholar
  11. 11.
    DeStefano, R.J., Tao, L., Gai, K.: Improving data governance in large organizations through ontology and linked data. In: 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 279–284. IEEE, June 2016Google Scholar
  12. 12.
    Dombrowski, U., Wagner, T.: Mental strain as field of action in the 4th industrial revolution. Procedia CIRP 17, 100–105 (2014)CrossRefGoogle Scholar
  13. 13.
    Ðurić, B.O.: Organisational metamodel for large-scale multi-agent systems: first steps towards modelling organisation dynamics. Adv. Distrib. Comput. Artif. Intell. J. 6(3), 2017 (2017)Google Scholar
  14. 14.
    Elnagdy, S.A., Qiu, M., Gai, K.: Cyber incident classifications using ontology-based knowledge representation for cybersecurity insurance in financial industry. In: 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 301–306. IEEE, June 2016Google Scholar
  15. 15.
    Gai, K., Du, Z., Qiu, M., Zhao, H.: Efficiency-aware workload optimizations of heterogeneous cloud computing for capacity planning in financial industry. In: 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 1–6. IEEE, November 2015Google Scholar
  16. 16.
    Gai, K., Qiu, M., Sun, X.: A survey on FinTech. Comput. Appl. 103, 262–273 (2017)Google Scholar
  17. 17.
    Gai, K., Qiu, M., Sun, X., Zhao, H.: Security and privacy issues: a survey on FinTech. In: International Conference on Smart Computing and Communication, pp. 236–247. Springer, Cham, December 2016Google Scholar
  18. 18.
    García, E., Rodríguez, S., Martín, B., Zato, C., Pérez, B.: MISIA: middleware infrastructure to simulate intelligent agents. In: International Symposium on Distributed Computing and Artificial Intelligence, pp. 107–116. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Georgakoudis, G., Gillan, C.J., Sayed, A., Spence, I., Faloon, R., Nikolopoulos, D.S.: Methods and metrics for fair server assessment under real-time financial workloads. Concurren. Comput. Pract. Exp. 28(3), 916–928 (2016)CrossRefGoogle Scholar
  20. 20.
    Gomber, P., Koch, J.A., Siering, M.: Digital finance and FinTech: current research and future research directions. Bus. Econ. 87, 537–580 (2017)Google Scholar
  21. 21.
    González, C., Burguillo, J.C., Llamas, M., Rosalía, L.A.Z.A.: Designing intelligent tutoring systems: a personalization strategy using case-based reasoning and multi-agent systems. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 2(1), 41–54 (2013)Google Scholar
  22. 22.
    Havandi, E., Shavandi, H., Ghanbari, A.: Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowl. Based Syst. 23(8), 800–808 (2010)CrossRefGoogle Scholar
  23. 23.
    Hüllermeier, E., Minor, M. (Eds.): Case-based reasoning research and development. In: Proceedings of 22nd International Conference on ICCBR 2014, Cork, Ireland, vol. 8765. Springer, 29 September–1 October 2014Google Scholar
  24. 24.
    Isaza, G., Mejía, M.H., Castillo, L.F., Morales, A., Duque, N.: Network management using multi-agents system. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 1(3), 49–54Google Scholar
  25. 25.
    Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3), 215–236 (1996)CrossRefGoogle Scholar
  26. 26.
    Lazarova, D.: Fintech trends: the internet of things, January 2018.
  27. 27.
    Li, B., Hoi, S.C.: Online portfolio selection: a survey. ACM Comput. Surv. (CSUR) 46(3), 35 (2014)zbMATHGoogle Scholar
  28. 28.
    López Barriuso, A., Prieta Pintado, F.D.L., Lozano Murciego, Á., Hernández, D., Revuelta Herrero, J.: JOUR-MAS: a multi-agent system approach to help journalism management. Adv. Distrib. Comput. Artif. Intell. J. (2015)Google Scholar
  29. 29.
    Lu, C.J., Lee, T.S., Chiu, C.C.: Financial time series forecasting using independent component analysis and support vector regression. Decis. Supp. Syst. 47(2), 115–125 (2009)CrossRefGoogle Scholar
  30. 30.
    Lu, Y., Roychowdhury, V., Vandenberghe, L.: Distributed parallel support vector machines in strongly connected networks. IEEE Trans. Neural Netw. 19(7), 1167–1178 (2008)CrossRefGoogle Scholar
  31. 31.
    Molina, D.I.: Fintech: Lo que la tecnología hace por las finanzas. Profit Editorial, p. 150 (2016). ISBN: 9788416904020Google Scholar
  32. 32.
    Owyang, J., Tran, C., Silva, C.: The Collaborative Economy. Altimeter, New York (2013)Google Scholar
  33. 33.
    Qiu, M., Ming, Z., Li, J., Gai, K., Zong, Z.: Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans. Comput. 64(12), 3528–3540 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Radziwon, A., Bilberg, A., Bogers, M., Madsen, E.S.: The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Eng. 69, 1184–1190 (2014)CrossRefGoogle Scholar
  35. 35.
    Rodriguez, S., Julián, V., Bajo, J., Carrascosa, C., Botti, V., Corchado, J.M.: Agent-based virtual organization architecture. Eng. Appl. Artif. Intell. 24(5), 895–910 (2011)CrossRefGoogle Scholar
  36. 36.
    Sagraves, A., Connors, G.: Capturing the value of data in banking. Appl. Market. Anal. 2(4), 304–311 (2017)Google Scholar
  37. 37.
    Song, Q., Liu, A., Yang, S.Y.: Stock portfolio selection using learning-to-rank algorithms with news sentiment. Neurocomputing 264, 20–28 (2017)CrossRefGoogle Scholar
  38. 38.
    Syam, N., Sharma, A.: Waiting for a sales renaissance in the fourth industrial revolution: machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management (2018)Google Scholar
  39. 39.
    Tkáč, M., Verner, R.: Artificial neural networks in business: two decades of research. Appl. Soft Comput. 38, 788–804 (2016)CrossRefGoogle Scholar
  40. 40.
    Wang, L.X.: Dynamical models of stock prices based on technical trading rules part I: the models. IEEE Trans. Fuzzy Syst. 23(4), 787–801 (2015)CrossRefGoogle Scholar
  41. 41.
    Wang, L.X.: Dynamical models of stock prices based on technical trading rules—part III: application to Hong Kong stocks. IEEE Trans. Fuzzy Syst. 23(5), 1680–1697 (2015)CrossRefGoogle Scholar
  42. 42.
    Xu, K., Yue, H., Guo, L., Guo, Y., Fang, Y.: Privacy-preserving machine learning algorithms for big data systems. In: 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS), pp. 318–327. IEEE, June 2015Google Scholar
  43. 43.
    Yu, K., Gao, Y., Zhang, P., Qiu, M.: Design and architecture of dell acceleration appliances for database (DAAD): a practical approach with high availability guaranteed. In: 2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), pp. 430–435. IEEE, August 2005. 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conference on Embedded Software and Systems (ICESS)Google Scholar
  44. 44.
    Zato, C., Villarrubia, G., Sánchez, A., Bajo, J., Corchado, J.M.: PANGEA: a new platform for developing virtual organizations of agents. Int. J. Artif. Intell. 11(A13), 93–102 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena Hernández
    • 1
  • Angélica González
    • 2
  • Belén Pérez
    • 2
  • Ana de Luis Reboredo
    • 2
  • Sara Rodríguez
    • 1
    • 2
    Email author
  1. 1.BISITE Research GroupUniversity of SalamancaSalamancaSpain
  2. 2.Computer Sciences and Automation Department, Facultad de CienciasUniversity of SalamancaSalamancaSpain

Personalised recommendations