Advertisement

The Use of Artificial Neural Networks in Tomographic Reconstruction of Soil Embankments

  • Tomasz Rymarczyk
  • Grzegorz Kłosowski
  • Arkadiusz Gola
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)

Abstract

This paper deals with the problem of tomographic reconstruction of objects inside embankments. The article presents a new method of tomographic reconstruction of images of such technical objects as flood banks and dams. The concept is based on a neural controller that converts electrical signals into individual pixels of the image. The proposed solution provided very good quality of mappings for both small and large objects hidden inside flood embankments and dams.

Keywords

Neural networks Multilayer perceptron Imaging tomography 

References

  1. 1.
    Rymarczyk, T.: New methods to determine moisture areas by electrical impedance tomography. Int. J. Appl. Electromagn. Mech. 37(1–2), 79–87 (2016)CrossRefGoogle Scholar
  2. 2.
    Banasiak, R., Wajman, R., Sankowski, D., Soleimani, M.: Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model. Prog. Electromagn. Res. (PIER) 100, 219–234 (2010)CrossRefGoogle Scholar
  3. 3.
    Grudzien, K., Chaniecki, Z., Romanowski, A., Niedostatkiewicz, M., Sankowski, D.: ECT image analysis methods for shear zone measurements during silo discharging process. Chin. J. Chem. Eng. 20(2), 337–345 (2012)CrossRefGoogle Scholar
  4. 4.
    Borecka, A., Stopkowicz, A., Sekuła, K.: Metoda obserwacyjna i monitoring geotechniczny w świetle przepisów prawa do oceny zachowania podłoża i konstrukcji inżynierskich. Przegląd Geologiczny 65(10), 685–691 (2017)Google Scholar
  5. 5.
    Jasiulewicz-Kaczmarek M.: Practical aspects of the application of RCM to select optimal maintenance policy of the production line. In: Nowakowski, T., et al.: Safety and Reliability: Methodology and Applications - Proceedings of the European Safety and Reliability Conference, ESREL 2014, Taylor & Francis Group, London, pp. 1187–1195 (2015)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Ślizewski, B.: Wybrane zagadnienia bezpieczeństwa wałów przeciwpowodziowych w Niemczech. Woda-Środowisko-Obszary Wiejskie 7, 45–57 (2007)Google Scholar
  8. 8.
    Nicholson, D., Tse, C., Penny, C.: The observational method in ground engineering: principles and applications. Report 185. Construction Industry Research and Information Association, London (1999)Google Scholar
  9. 9.
    Korff, M., De Jong, E., Bles T.J.: SWOT analysis observational method applications. In: Delange, P., Desrues, J., et al. (eds.) Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 1883–1888 (2013)Google Scholar
  10. 10.
    Borecka, A., Sekuła, K., Kessler, D., Majerski, P.: Zastosowanie testowych czujników pomiaru temperatury w quasi-przestrzennych (3D) sieciach pomiarowych w hydrotechnicznych budowlach ziemnych – wyniki wstępne. Przegląd Geologiczny 65(10), 748–755 (2017)Google Scholar
  11. 11.
    Kowalski, A., Rosienkiewicz, M.: ANN-Based hybrid algorithm supporting composition control of casting slip in manufacture of ceramic insulators. In: Advances in Intelligent Systems and Computing, vol. 527, pp. 357–365 (2017)Google Scholar
  12. 12.
    Sitek, P., Wikarek, J.: A hybrid programming framework for modeling and solving constraint satisfaction and optimization problems. Sci. Program. 2016, Article No. 5102616 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tomasz Rymarczyk
    • 1
  • Grzegorz Kłosowski
    • 2
  • Arkadiusz Gola
    • 2
  1. 1.Research and Development CentreNetrix S.A.LublinPoland
  2. 2.Lublin University of TechnologyLublinPoland

Personalised recommendations