Emerging Nanotechnology for Third Generation Photovoltaic Cells

  • Biju Mani Rajbongshi
  • Anil VermaEmail author


Nanotechnology for solar energy harvesting is attracting significant attention for its drastic improvement in performance. Recent innovation in the material and device structure for the photovoltaic solar cell improves the efficiency, cost and stability. Various approaches have been envisioned to enhance the efficiency. Nanotechnology includes engineering in some fundamental properties, structure of the nanomaterial and the devices architecture. Engineering the fundament properties of the nanomaterial can enhance the photon harvesting as well as the inherent recombination. The basic approaches in nanotechnology, intermediate band and multiple exciton generation can give the promise to enhance the power conversion efficiency in third generation photovoltaic cell. In recent years new and improved device architecture has been coupled with engineered nanomaterial showing better efficiency which can be compared with conventional silicon solar cell. Recently, multi-junction (38.9%, four junctions) and perovskite solar cell (22.7%) are showing notable device efficiency. New generation of photovoltaic technologies reduces the material amount which consequently reduces the material cost and the fabrication cost making the system economically feasible. Future research needs to focus on the development of new and green material for photovoltaic cell with minimal fabrication cost. To make the photovoltaic materials and system environment friendly, use of bio-based materials could be the promising future approach.


  1. Abdulrazzaq OA, Saini V, Bourdo S, Dervishi E, Biris AS (2013) Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part Sci Technol 31(5):427–442CrossRefGoogle Scholar
  2. Al-Mohsin HA, Mineart KP, Armstrong DP, El-Shafei AA, Spontak RJ (2018) Quasi-Solid-State Dye‐ Sensitized Solar Cells Containing a Charged Thermoplastic Elastomeric Gel Electrolyte and Hydrophilic/phobic Photosensitizers. Solar RRL, 2:1700145CrossRefGoogle Scholar
  3. Ansari Haque MI, Qurashi A, Nazeeruddin MK (2018) Frontiers, opportunities, and challenges in perovskite solar cells: a critical review. J Photochem Photobiol C Photchem Rev 35:1–24CrossRefGoogle Scholar
  4. Assadi MK, Hanaei H, (2017) Transparent Carbon Nanotubes (CNTs) as Antireflection and Self-cleaning Solar Cell Coating. In: Engineering Applications of Nanotechnology. Springer, 101–114Google Scholar
  5. Atwater Harry A, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205PubMedCrossRefGoogle Scholar
  6. Bajpai M, Srivastava R, Dhar R (2017) Effect of plasmonic enhancement of light absorption on the efficiency of polymer solar cell. In: Recent trends in materials and devices. Springer, Cham, New York, pp 315–317CrossRefGoogle Scholar
  7. Beard MC, Randy JE (2008) Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser Photonics Rev 2(5):377–399CrossRefGoogle Scholar
  8. Benanti TL, Venkataraman D (2006) Organic solar cells: An overview focusing on active layer morphology. Photosynth Res 87(1):73–81PubMedCrossRefGoogle Scholar
  9. Bin L, Wang L, Kang B, Wang P, Qiu Y (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol Energy Mater Sol Cells 90(5):549–573CrossRefGoogle Scholar
  10. Bitnar B, Durisch W, Holzner R (2013) Thermophotovoltaics on the move to applications. Appl Energy 105:430–438CrossRefGoogle Scholar
  11. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial College Press, LondonCrossRefGoogle Scholar
  12. Cao J, Wu B, Chen R, Wu Y, Hui Y, Mao BW, Zheng N (2018) Efficient, Hysteresis Free, and Stable Perovskite Solar Cells with ZnO as Electron Transport Layer: Effect of Surface Passivation. Advanced Materials 30:1705596CrossRefGoogle Scholar
  13. Chan L, DeCuir EA Jr, Fu R, Morse DE, Gordon MJ (2017) Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity. J Opt 19(11):114007CrossRefGoogle Scholar
  14. Chuang CHM, Brown PR, Bulović V, Bawendi MG (2014) Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13(8):796PubMedPubMedCentralCrossRefGoogle Scholar
  15. Coutts TJ (2001) An overview of thermophotovoltaic generation of electricity. Sol Energy Mater Sol Cells 66(1–4):443–452CrossRefGoogle Scholar
  16. De Wild J, Meijerink A, Rath JK, Van Sark WGJHM, Schropp REI (2011) Upconverter solar cells: materials and applications. Energy Environ Sci 12:4835–4848CrossRefGoogle Scholar
  17. Ding I (2011) Plasmonic dye-sensitized solar cells. Adv Energy Mater 1(1):52–57CrossRefGoogle Scholar
  18. Djurišić AB, Liu FZ, Tam HW, Wong MK, Ng A, Surya C, Chen W, He ZB (2017) Perovskite solar cells–an overview of critical issues. Prog Quantum Electron 53:1–37CrossRefGoogle Scholar
  19. Dong S, Pootrakulchote N, Li R, Guo J, Wang Y, Zakeeruddin SM, Grätzel M, Wang P (2008) New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes. J Phys Chem C 112(44):17046–17050CrossRefGoogle Scholar
  20. El Chaar L, Lamont LA, El Zein N (2011) Review of photovoltaic technologies. Renew Sust Energ Rev 15:2165–2175CrossRefGoogle Scholar
  21. Fahrenbruch AL, Richard HB (2012) Fundamental of solar cell: photovoltaic solar energy conversion. Academic Press, Cambridge, MA ISBN-0-12-247680-8Google Scholar
  22. Flory F, Escoubas L, Berginc G (2011) Optical properties of nanostructured materials: a review. J Nanophotonics 5:052502CrossRefGoogle Scholar
  23. Fonash S (2012) Solar cell device physics. Elsevier, New YorkGoogle Scholar
  24. Fujishima A, Zhang XT (2006) Solid-state dye-sensitized solar cells. In: Nanostructured materials for solar energy conversion. Elsevier, New York, pp 255–273CrossRefGoogle Scholar
  25. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728PubMedCrossRefGoogle Scholar
  26. Gao F, Dai H, Pan H, Chen Y, Wang J, Chen Z (2018) Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with CuInS2 quantum dots. J Colloid Interface Sci 513:693–699PubMedCrossRefGoogle Scholar
  27. Garret M, Grover S (2013) Rectenna solar cells, 4th edn. Springer, New YorkGoogle Scholar
  28. Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans 20:2655–2666CrossRefGoogle Scholar
  29. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photchem Rev 4(2):145–153CrossRefGoogle Scholar
  30. Green MA (1981) Solar cells: operating principles, technology, and system applications. Prentice Hall, Englewood Cliffs, NJ ISBN: 0138222703Google Scholar
  31. Green MA (2018) Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 26:3–12CrossRefGoogle Scholar
  32. Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ (2015) Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett 6(3):432–437PubMedCrossRefGoogle Scholar
  33. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14(10):5561–5568PubMedCrossRefGoogle Scholar
  34. Hahn H (2003) Unique features and properties of nanostructured materials. Adv Eng Mater 5(5):277–284CrossRefGoogle Scholar
  35. Han N, Wang F, Johnny C (2012) One-dimensional nanostructured materials for solar energy harvesting. Nanomater Energy 1(1):4–17CrossRefGoogle Scholar
  36. Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42(11):1740–1747PubMedCrossRefGoogle Scholar
  37. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945CrossRefGoogle Scholar
  38. Horst S, Wang J, Wilkinson SJ (2018) Durable MGO-MGF2 composite film for infrared anti-reflection coatings. US Patent Application No. 15/450,647Google Scholar
  39. Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17(2):119PubMedCrossRefGoogle Scholar
  40. Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H (2018) Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule. Adv Mater 30(11). Scholar
  41. Huang A, Lei L, Zhu J, Yu Y, Liu Y, Yang S, Bao S, Cao X, Jin P (2017) Achieving high current density of perovskite solar cells by modulating the dominated facets of room-temperature DC magnetron sputtered TiO2 electron extraction layer. ACS Appl Mater Interfaces 9(3):2016–2022PubMedCrossRefGoogle Scholar
  42. Ishii T, Masuda A (2017) Annual degradation rates of recent crystalline silicon photovoltaic modules. Prog Photovoltaics 25:953–967CrossRefGoogle Scholar
  43. Jacoby M (2016) The future of low-cost solar cells. Chem Eng News 94(18):30–35CrossRefGoogle Scholar
  44. Jeong YJ, Song JH, Jeong S, Baik SJ (2018) PbS Colloidal Quantum Dot Solar Cells With Organic Hole Transport Layers for Enhanced Carrier Separation and Ambient Stability. IEEE J Photovoltaics 99:1–6Google Scholar
  45. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18753CrossRefGoogle Scholar
  46. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4(6):908–918PubMedCrossRefGoogle Scholar
  47. Kaur N, Singh M, Pathak D, Wagner T, Nunzi JM (2014) Organic materials for photovoltaic applications: Review and mechanism. Synth Met 190:20–26CrossRefGoogle Scholar
  48. Kilic B, Turkdogan S, Astam A, Baran SS, Asgin M, Gur E, Kocak Y (2018) Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell. J Nanopart Res 20(1):11CrossRefGoogle Scholar
  49. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ (2006) New Architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer. Adv Mater 18(5):572–576CrossRefGoogle Scholar
  50. Kim JM, Kim S, Shin DH, Seo SW, Lee HS, Kim JH, Jang CW, Kang SS, Choi SH, Kwak GY, Kim KJ (2018) Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes. Nano Energy 43:124–129CrossRefGoogle Scholar
  51. Krebs FC, Spanggaard H (2005) Significant improvement of polymer solar cell stability. Chem Mater 17(21):5235–5237CrossRefGoogle Scholar
  52. Kyaw AKK, Wang DH, Wynands D, Zhang J, Nguyen TQ, Bazan GC, Heeger AJ (2013) Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett 13(8):3796–3801PubMedCrossRefGoogle Scholar
  53. Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JW (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8(5):1501–1505PubMedCrossRefGoogle Scholar
  54. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153CrossRefGoogle Scholar
  55. Lim SP, Lim YS, Pandikumar A, Lim HN, Ng YH, Ramaraj R, Bien DCS, Abou-Zied OK, Huang NM (2017) Gold–silver@ TiO2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Phys Chem Chem Phys 19(2):1395–1407PubMedCrossRefGoogle Scholar
  56. Lim EL, Yap CC, Jumali MHH, Teridi MAM, Teh CH (2018) A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-Micro Lett 10(2):27CrossRefGoogle Scholar
  57. Luisa HF, Sutherland D (2013) Nanotechnologies: principles, applications, implications and hands-on activities. Publications Office of the European Union, LuxembourgGoogle Scholar
  58. Mali SS, Shim CS, Park HK, Heo J, Patil PS, Hong CK (2015) Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem Mater 27(5):1541–1551CrossRefGoogle Scholar
  59. Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sust Energ Rev 65:537–552CrossRefGoogle Scholar
  60. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242PubMedCrossRefGoogle Scholar
  61. Mishra A, Fischer MK, Bäuerle P (2009) Metal free organic dyes for dye sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499CrossRefGoogle Scholar
  62. Mlinar V (2013) Engineered nanomaterials for solar energy conversion. Nanotechnology 24(4):042001PubMedCrossRefGoogle Scholar
  63. Mora-Sero I, Gimenez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyoda T, Bisquert J (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857PubMedCrossRefGoogle Scholar
  64. Nam M, Huh JY, Park Y, Hong YC , Ko DH (2018) Interfacial Modification Using Hydrogenated TiO2 Electron Selective Layers for High Efficiency and Light Soaking Free Organic Solar Cells. Advanced Energy Materials 8:1703064CrossRefGoogle Scholar
  65. Neamen DA (1997) Semiconductor physics and devices, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  66. Nozik AJ (2002) Quantum dot solar cells. Phys E 14:115–120CrossRefGoogle Scholar
  67. Peike C, Hädrich I, Wei KA, Dürr I (2013) Overview of PV module encapsulation materials. Photovol Int 19:85–92Google Scholar
  68. Pelecky L, Diandra L, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783CrossRefGoogle Scholar
  69. Pillai SA, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94(9):1481–1486CrossRefGoogle Scholar
  70. Piyadasa A, Wang S, Gao PX (2017) Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: a review. Semicond Sci Technol 32(7):073001CrossRefGoogle Scholar
  71. Qi J, Dang X, Hammond PT, Belcher AM (2011) Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@ oxide core–shell nanostructure. ACS Nano 5(9):7108–7116PubMedCrossRefGoogle Scholar
  72. Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J (2017) Recent progress in stability of perovskite solar cells. J Semicond 38(1):011002CrossRefGoogle Scholar
  73. Reddy K, Sekhar C (2018) Broad band antireflective coatings using novel in-situ synthesis of hollow MgF2 nanoparticles. Sol Energy Mater Sol Cells 176:259–265CrossRefGoogle Scholar
  74. Reinders L, Ang Ã, Verlinden P, Freundlich A (2017) Photovoltaic solar energy: from fundamentals to applications. John Wiley & Sons, Hoboken, NJGoogle Scholar
  75. Ren Y, Sun D, Tsao HN, Yuan Y, Zakeeruddin SM, Wang P, Grätzel M (2018) A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. J Am Chem Soc 140(7):2405–2408PubMedCrossRefGoogle Scholar
  76. Rho WY, Yang HY, Kim HS, Son BS, Suh JS, Jun BH (2018a) Recent advances in plasmonic dye-sensitized solar cells. J Solid State Chem 258:271–282CrossRefGoogle Scholar
  77. Rho WY, Kim HS, Chung WJ, Suh JS, Jun BH, Hahn YB (2018b) Enhancement of power conversion efficiency with TiO2 nanoparticles/nanotubes-silver nanoparticles composites in dye-sensitized solar cells. Appl Surf Sci 429:23–28CrossRefGoogle Scholar
  78. Richards BS, Aruna I, MacDougall SKW Hueso JM (2012) Up-and down-conversion materials for photovoltaic devices. In: Photonics for solar energy systems IV, 8438. International Society for Optics and Photonics, Bellingham, WA, p 843802Google Scholar
  79. Rühle S, Shalom M, Zaban A (2010) Quantum dot sensitized solar cells. ChemPhysChem 11(11):2290–2304PubMedCrossRefGoogle Scholar
  80. Selvaraj P, Baig H, Mallick TK, Siviter J, Montecucco A, Li W, Paul M, Sweet T, Gao M, Knox AR, Sundaram S (2018) Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Sol Energy Mater Sol Cells 175:29–34CrossRefGoogle Scholar
  81. Semonin OE, Luther JM, Beard MC (2012) Quantum dots for next-generation photovoltaics. Mater Today 15(11):508–515CrossRefGoogle Scholar
  82. Seo JY, Uchida R, Kim HS, Saygili Y, Luo J, Moore C, Kerrod J, Wagstaff A, Eklund M, McIntyre R, Pellet N (2018) Boosting the efficiency of perovskite solar cells with csbr modified mesoporous TiO2 beads as electron selective contact. Adv Funct Mater 28:1705763CrossRefGoogle Scholar
  83. Shan GB, Demopoulos GP (2010) Near infrared sunlight harvesting in dye sensitized solar cells via the insertion of an up-converter TiO2 nanocomposite layer. Adv Mater 22(39):4373–4377PubMedCrossRefGoogle Scholar
  84. Shang Y, Shuwei H, Chunhui Y, Guanying C (2015) Enhancing solar cell efficiency using photon upconversion materials. Nano 5:1782–1809Google Scholar
  85. Sharma A, Singh V, Bougher TL, Cola BA (2015) A carbon nanotube optical rectenna. Nat Nanotechnol 10(12):1027PubMedCrossRefGoogle Scholar
  86. Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Jinquan W (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884PubMedPubMedCentralCrossRefGoogle Scholar
  87. Singh SC (2015) Solar photovoltaics: fundamentals, technologies and applications. PHI Learning Pvt. Ltd., New DelhiGoogle Scholar
  88. Sining Y, Lund PD, Hinsch A (2015) Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ Sci 8(12):3495–3514CrossRefGoogle Scholar
  89. Sogabe T, Shen Q, Yamaguchi K (2016) Recent progress on quantum dot solar cells: a review. J Photonics Energy 6(4):040901CrossRefGoogle Scholar
  90. Son DY, Im JH, Kim HS, Park NG (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118(30):16567–16573CrossRefGoogle Scholar
  91. Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512CrossRefGoogle Scholar
  92. Sun Z, Xiahou Y, Cao T, Zhang K, Wang Z, Huang P, Zhu K, Yuan L, Zhou Y, Song B, Xia H (2018) Enhanced p-i-n type perovskite solar cells by doping AuAg@ AuAg core-shell alloy nanocrystals into PEDOT: PSS layer. Org Electron 52:309–316CrossRefGoogle Scholar
  93. Sze SM, Ng KK (2006) Physics of semiconductor devices. John Wiley & Sons, Hoboken, NJCrossRefGoogle Scholar
  94. Tang Q, Zhang H, He B, Yang P (2016) An all-weather solar cell that can harvest energy from sunlight and rain. Nano Energy 30:818–824CrossRefGoogle Scholar
  95. Teymourinia H, Salavati-Niasari M, Amiri O, Farangi M (2018) Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell. J Mol Liq 251:267–272CrossRefGoogle Scholar
  96. Tsakalakos L (2010) Nanotechnology for photovoltaics. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  97. Van Sark WGJHM, Meijerink A, Schropp REI (2012) Solar spectrum conversion for photovoltaics using nanoparticles. In: Third generation photovoltaics. InTech, LondonGoogle Scholar
  98. Vangelidis I, Theodosi A, Beliatis MJ, Gandhi K, Laskarakis A, Patsalas P, Logothetidis S, Silva SRPP, Lidorikis E (2018) plasmonic organic photovoltaics: unraveling plasmonic enhancement for realistic cell geometries. ACS Photonics 5(4):1440–1452CrossRefGoogle Scholar
  99. Wang N, Liu M, Tan H, Liang J, Zhang Q, Wei C, Zhao Y, Sargent EH, Zhang X (2017) Compound homojunction: heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting. Small 13(10):1603527CrossRefGoogle Scholar
  100. Wang R, Wu X, Xu K, Zhou W, Shang Y, Tang H, Chen H, Ning Z (2018a) Highly efficient inverted structural quantum dot solar cells. Adv Mater 30(7):1704882CrossRefGoogle Scholar
  101. Wang Y, Zhang Q, Huang F, Li Z, Zheng YZ, Tao X, Cao G (2018b) In situ assembly of well-defined Au nanoparticles in TiO2 films for plasmon-enhanced quantum dot sensitized solar cells. Nano Energy 44:135–143CrossRefGoogle Scholar
  102. Wang Y, Zhang Y, Qiu N, Feng H, Gao H, Kan B, Ma Y, Li C, Wan X, Chen Y (2018c) A halogenation strategy for over 12% efficiency nonfullerene organic solar cells. Adv Energy Mater 8:1702870CrossRefGoogle Scholar
  103. Wei H, Li D, Zheng X, Meng Q (2018) Recent progress of colloidal quantum dot based solar cells. Chin Phys B 27(1):018808CrossRefGoogle Scholar
  104. Wolf M (1971) A new look at silicon solar cell performance. Energy Convers 11(2):63–73CrossRefGoogle Scholar
  105. Womack G, Kaminski PM, Ali A, Isbilir K, Gottschalg R, Walls JM (2017) Performance and durability of broadband antireflection coatings for thin film CdTe solar cells. J Vac Sci Technol A 35:021201CrossRefGoogle Scholar
  106. Wu Q, Hou J, Zhao H, Liu Z, Yue X, Peng S, Cao H (2018) Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS-layer. Dalton Trans 47(7):2214–2221PubMedCrossRefGoogle Scholar
  107. Xiao B, Song J, Guo B, Zhang M, Li W, Zhou R, Liu J, Wang HB, Zhang M, Luo G, Liu F (2018) Improved photocurrent and efficiency of non-fullerene organic solar cells despite higher charge recombination. J Mater Chem A 6:957–962CrossRefGoogle Scholar
  108. Yang Y (2017) Broadband graphene oxide anti-reflection coating on silicon nanostructures. In: Frontiers in optics. Optical Society of America, Washington, DCGoogle Scholar
  109. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162CrossRefGoogle Scholar
  110. Ye C, Wang Y, Bi Z, Guo X, Fan Q, Chen J, Ou X, Ma W, Zhang M (2018) High-performance organic solar cells based on a small molecule with thieno [3, 2-b] thiophene as π-bridge. Org Electron 53:273–279CrossRefGoogle Scholar
  111. Yeh MH, Leu YA, Chiang WH, Li YS, Chen GL, Li TJ, Chang LY, Lin LY, Lin JJ, Ho KC (2018) Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: heteroatom doping level effect on tri-iodide reduction reaction. J Power Sources 375:29–36CrossRefGoogle Scholar
  112. You J, Meng L, Song TB, Guo TF, Yang MY, Chang WH, Hong Z (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75–81PubMedCrossRefGoogle Scholar
  113. Zhang F, Wang S, Li X, Xiao Y (2016) Recent progress of perovskite solar cells. Curr Nanosci 12(2):137–156CrossRefGoogle Scholar
  114. Zhang J, Marina F, Anders H, Gerrit B (2018a) Solid-state dye-sensitized solar cells. In: Molecular devices for solar energy conversion and storage. Springer, Singapore, pp 151–185CrossRefGoogle Scholar
  115. Zhang J, Meng Z, Guo D, Zou H, Yu J, Fan K (2018b) Hole-conductor-free perovskite solar cells prepared with carbon counter electrode. Appl Surf Sci 430:531–538CrossRefGoogle Scholar
  116. Zhang R, Zhao M, Wang Z, Wang Z, Zhao B, Miao Y, Zhou Y, Wang H, Hao Y, Chen G, Zhu F (2018c) Solution-processable ZnO/carbon quantum dots electron extraction layer for highly efficient polymer solar cells. ACS Appl Mater Interfaces 10(5):4895–4903PubMedCrossRefGoogle Scholar
  117. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151PubMedCrossRefGoogle Scholar
  118. Zheng Z, Ji H, Yu P, Wang Z (2016) Recent progress towards quantum dot solar cells with enhanced optical absorption. Nanoscale Res Lett 11(1):266PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zheng YZ, Tao X, Zhang JW, Lai XS, Li N (2018a) Plasmonic enhancement of light-harvesting efficiency in tandem dye-sensitized solar cells using multiplexed gold core/silica shell nanorods. J Power Sources 376:26–32CrossRefGoogle Scholar
  120. Zhou X, Bao C, Li F, Gao H, Yu T, Yang J, Zhu W, Zou Z (2015) Hole-transport-material-free perovskite solar cells based on nanoporous gold back electrode. RSC Adv 5(72):58543–58548CrossRefGoogle Scholar
  121. Zhou Z, Sakr E, Sun Y, Bermel P (2016) Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics 5(1):1–21CrossRefGoogle Scholar
  122. Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips DL, Yang S (2014) Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136(10):3760–3763PubMedCrossRefGoogle Scholar
  123. Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC (2012) Broadband dye-sensitized upconversion of near-infrared light. Nat Photonics 6(8):560CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sustainable Environergy Research Lab (SERL), Department of Chemical EngineeringIndian Institute of Technology DelhiDelhiIndia

Personalised recommendations