Advertisement

Plants as Fabricators of Biogenic Platinum Nanoparticles: A Gambit Endeavour

  • Babita Jha
  • Anal K. Jha
  • Kamal Prasad
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The chapter presents a synoptic overview of fabrication of platinum nanoparticles and envisages the importance and benefits of plant-mediated fabrication of biogenic platinum nanoparticles. It summarizes the up-to-date advances in the fabrication of platinum nanoparticles by plants and other biological sources, and highlights as to why plants as fabricators of biogenic platinum nanoparticles have drawn an unequivocal attention. It focuses on the possible benefits of employing plants in comparison to other biological sources and critically discusses the underlying bioreductive mechanism.

Keywords

Biogenic Platinum nanoparticles Microorganisms Plant extracts Terpenoids Proteins Enzymes Biomolecules 

References

  1. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925. https://doi.org/10.1126/science.272.5270.1924 CrossRefPubMedGoogle Scholar
  2. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602. https://doi.org/10.1021/sc300118u CrossRefGoogle Scholar
  3. Alam MN, Roy N, Mandal D, Begum NA (2013) Green chemistry for nanochemistry: exploring medicinal plants for the biogenic synthesis of metal NPs with fine-tuned properties. RSC Adv 3:11935–11956. https://doi.org/10.1039/c3ra23133j CrossRefGoogle Scholar
  4. Annanouch FE, Haddi Z, Llobet E (2014) Aerosol assisted chemical vapor deposition for C6 H6 and NO2 detection. IEEE Trans Sensors 6–9. https://doi.org/10.1109/ICSENS.2014.6984932
  5. Aritonang HF, Onggo D, Ciptati C, Radiman CL (2014) Synthesis of platinum nanoparticles from K2 PtCl4 solution using bacterial cellulose matrix. J Nanoparticles 2014:1–6 Article ID 285954. https://doi.org/10.1155/2014/285954 CrossRefGoogle Scholar
  6. Asharani PV, Xinyi N, Hande MP, Valiyaveettil S (2010) DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine (Lond) 5:51–64. https://doi.org/10.2217/nnm.09.85 CrossRefGoogle Scholar
  7. Asztemborska M, Steborowski R, Kowalska J, Bystrzejewska-Piotrowska G (2015) Accumulation of platinum nanoparticles by Sinapis alba and Lepidium sativum plants. Water Air Soil Pollut 226:126–127. https://doi.org/10.1007/s11270-015-2381-y CrossRefPubMedPubMedCentralGoogle Scholar
  8. Attard G, Casadesús M, MacAskie LE, Deplanche K (2012) Biosynthesis of platinum nanoparticles by Escherichia coli MC4100: can such nanoparticles exhibit intrinsic surface enantioselectivity? Langmuir 28:5267–5274. https://doi.org/10.1021/la204495z CrossRefPubMedGoogle Scholar
  9. Bali R, Siegele R, Harris AT (2010) Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea. J Nanopart Res 12:3087–3095. https://doi.org/10.1007/s11051-010-9904-7 CrossRefGoogle Scholar
  10. Baskaran B, Muthukumarasamy A, Chidambaram S, Sugumaran A, Ramachandran K, Rasu Manimuthu T (2017) Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells. IET Nanobiotechnol 11:241–246. https://doi.org/10.1049/iet-nbt.2016.0040 CrossRefPubMedGoogle Scholar
  11. Bennett JA, Attard GA, Deplanche K, Casadesus M, Huxter SE, Macaskie LE, Wood J (2012) Improving selectivity in 2-butyne-1,4-diol hydrogenation using biogenic Pt catalysts. ACS Catal 2:504–511. https://doi.org/10.1021/cs200572z CrossRefGoogle Scholar
  12. Bommersbach P, Chaker M, Mohamedi M, Guay D (2008) Physico-chemical and electrochemical properties of platinum - tin nanoparticles synthesized by pulsed laser ablation for ethanol oxidation. J Phys Chem C 112:14672–14681. https://doi.org/10.1021/jp801143a CrossRefGoogle Scholar
  13. Bonnemann H, Richards RM (2001) Nanoscopic metal particles - synthetic methods and potential applications. Eur J Inorg Chem 2001:2455–2480. https://doi.org/10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z CrossRefGoogle Scholar
  14. Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of au, ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708. https://doi.org/10.1166/jnn.2007.600 CrossRefPubMedGoogle Scholar
  15. Capeness MJ, Edmundson MC, Horsfall LE (2015) Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New Biotechnol 32:727–731. https://doi.org/10.1016/j.nbt.2015.02.002 CrossRefGoogle Scholar
  16. Castro L, Blázquez ML, González F, Muñoz JÁ, Ballester A (2015) Biosynthesis of silver and platinum nanoparticles using orange peel extract: characterisation and applications. IET Nanobiotechnol 9:252–258. https://doi.org/10.1049/iet-nbt.2014.0063 CrossRefPubMedGoogle Scholar
  17. Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004. https://doi.org/10.4014/jmb.1110.10085 CrossRefPubMedGoogle Scholar
  18. Chau JLH, Chen CY, Yang MC, Lin KL, Sato S, Nakamura T, Yang CC, Cheng CW (2011) Femtosecond laser synthesis of bimetallic Pt-au nanoparticles. Mater Lett 65:804–807. https://doi.org/10.1016/j.matlet.2010.10.088 CrossRefGoogle Scholar
  19. Choi ID, Lee H, Shim YB, Lee D (2010) A one-step continuous synthesis of carbon-supported Pt catalysts using a flame for the preparation of the fuel electrode. Langmuir 26:11212–11216. https://doi.org/10.1021/la1005264 CrossRefPubMedGoogle Scholar
  20. Chopade B, Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P, Kitture R, Kale S, Bellare J (2015) Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 10:7477–7490. https://doi.org/10.2147/IJN.S91579 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Coccia F, Tonucci L, Bosco D, Bressan M, d’Alessandro N (2012) One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem 14:1073–1078. https://doi.org/10.1039/c2gc16524d CrossRefGoogle Scholar
  22. Correard F, Maximova K, Estève MA, Villard C, Roy M, Al-Kattan A, Sentis M, Gingras M, Kabashin AV, Braguer D (2014) Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications. Int J Nanomedicine 9:5415–5430. https://doi.org/10.2147/IJN.S65817 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (1999) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11:217–220. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<217::AID-ADMA217>3.0.CO;2-7 CrossRefGoogle Scholar
  24. Daniel MCM, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698 CrossRefPubMedGoogle Scholar
  25. Dauthal P, Mukhopadhyay M (2014) Biofabrication, characterization, and possible bio-reduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity. J Ind Eng Chem 22:185–191. https://doi.org/10.1016/j.jiec.2014.07.009 CrossRefGoogle Scholar
  26. Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55:9557–9577. https://doi.org/10.1021/acs.iecr.6b00861 CrossRefGoogle Scholar
  27. Deng QY, Yang B, Wang JF, Whiteley CG, Wang XN (2009) Biological synthesis of platinum nanoparticles with apoferritin. Biotechnol Lett 31:1505–1509. https://doi.org/10.1007/s10529-009-0040-3 CrossRefPubMedGoogle Scholar
  28. Dhand C, Dwivedi N, Loh XJ, Jie Ying AN, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5:105003–105037. https://doi.org/10.1039/C5RA19388E CrossRefGoogle Scholar
  29. Dobrucka R (2016) Biofabrication of platinum nanoparticles using Fumariae herba extract and their catalytic properties. Saudi J Biol Sci, in press. https://doi.org/10.1016/j.sjbs.2016.11.012
  30. Du Y, Su J, Luo W, Cheng G (2015) Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature. ACS Appl Mater Interfaces 7:1031–1034. https://doi.org/10.1021/am5068436 CrossRefPubMedGoogle Scholar
  31. Elia P, Zach R, Hazan S (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine 9:4007–4021. https://doi.org/10.2147/IJN.S57343 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Engelbrekt C, Sørensen KH, Lübcke T, Zhang J, Li Q, Pan C, Bjerrum NJ, Ulstrup J (2010) 1.7 nm platinum nanoparticles: synthesis with glucose starch, characterization and catalysis. Chem Phys Chem 11:2844–2853. https://doi.org/10.1002/cphc.201000380 CrossRefPubMedGoogle Scholar
  33. Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M, Anderson GJ, Wei J, Zhao Y, Nie G (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32:1611–1618. https://doi.org/10.1016/j.biomaterials.2010.11.004 CrossRefPubMedGoogle Scholar
  34. Gaidhani SV, Yeshvekar RK, Shedbalkar UU, Bellare JH, Chopade BA (2014) Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem 49:2313–2319. https://doi.org/10.1016/j.procbio.2014.10.002 CrossRefGoogle Scholar
  35. Gao F, Yang N, Obloh H, Nebel CE (2013) Shape-controlled platinum nanocrystals on boron-doped diamond. Electrochem Commun 30:55–58. https://doi.org/10.1016/j.elecom.2013.02.004 CrossRefGoogle Scholar
  36. Golunski SE (2007) Why use platinum in catalytic converters? Platin Met Rev 51:162. https://doi.org/10.1595/147106707X205857 CrossRefGoogle Scholar
  37. Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100. https://doi.org/10.1007/s10529-008-9825-z CrossRefPubMedGoogle Scholar
  38. Govender Y, Riddin TL, Gericke M, Whiteley CG (2010) On the enzymatic formation of platinum nanoparticles. J Nanopart Res 12:261–271. https://doi.org/10.1007/s11051-009-9604-3 CrossRefGoogle Scholar
  39. Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463. https://doi.org/10.1007/s11051-008-9533-6 CrossRefGoogle Scholar
  40. Honary S, Gharaei-fathabad E, Barabadi H, Naghibi F (2013) Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 13:1427–1430. https://doi.org/10.1166/jnn.2013.5989 CrossRefPubMedGoogle Scholar
  41. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 2014:1–18 Article ID 359316. https://doi.org/10.1155/2014/359316 CrossRefGoogle Scholar
  42. Isaac R, Gobalakrishnan S, Rajan G, Wu R-J, Pamanji SR, Khagga M, Baskaralingam V, Chavali M (2013) An overview of facile green biogenic synthetic routes and applications of platinum nanoparticles. Adv Sci Eng Med 5:763–770. https://doi.org/10.1166/asem.2013.1377 CrossRefGoogle Scholar
  43. Jana NR, Wang ZL, Sau TK, Pal T (2000) Seed-mediated growth method to prepare cubic copper nanoparticles. Curr Sci 79:1367–1370Google Scholar
  44. Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1:110–117. https://doi.org/10.1080/19430871003684572 CrossRefGoogle Scholar
  45. Jha AK, Prasad K (2011a) Green fruit of chili (Capsicum annum L.) synthesizes nano silver! Dig J Nanomater Biostruct 6:1717–1723Google Scholar
  46. Jha AK, Prasad K (2011b) Biosynthesis of gold nanoparticles using bael (Aegle marmelos) leaf: mythology meets technology. Int J Green Nanotechnol Biomed 3:92–97. https://doi.org/10.1080/19430892.2011.574560 CrossRefGoogle Scholar
  47. Jha AK, Prasad K (2013) Rose (Rosa sp.) petals assisted green synthesis of gold nanoparticles. J Bionanosci 7:245–250. https://doi.org/10.1166/jbns.2013.1139 CrossRefGoogle Scholar
  48. Jha AK, Prasad K, Kulkarni AR (2008) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotechnol 4:17–22Google Scholar
  49. Jha AK, Prasad K, Kumar V, Prasad K (2009a) Biosynthesis of silver nanoparticles using eclipta leaf. Biotechnol Prog 25:1476–1479. https://doi.org/10.1002/btpr.233 CrossRefPubMedGoogle Scholar
  50. Jha AK, Prasad K, Prasad K, Kulkarni AR (2009b) Plant system: Nature’s nanofactory. Colloids Surf B Biointerfaces 73:219–223. https://doi.org/10.1016/j.colsurfb.2009.05.018 CrossRefPubMedGoogle Scholar
  51. Jha B, Rao M, Chattopadhyay A, Bandyopadhyay A, Prasad K, Jha AK (2018) Punica granatum fabricated platinum nanoparticles: a therapeutic pill for breast cancer. AIP Conf Proc 30087:2–5. https://doi.org/10.1063/1.5032422
  52. John Leo A, Oluwafemi OS (2017) Plant-mediated synthesis of platinum nanoparticles using water hyacinth as an efficient biomatrix source – an eco-friendly development. Mater Lett 196:141–144. https://doi.org/10.1016/j.matlet.2017.03.047 CrossRefGoogle Scholar
  53. Karthik R, Sasikumar R, Chen SM, Govindasamy M, Vinoth Kumar J, Muthuraj V (2016) Green synthesis of platinum nanoparticles using Quercus glauca extract and its electrochemical oxidation of hydrazine in water samples. Int J Electrochem Sci 11:8245–8255. https://doi.org/10.20964/2016.10.62 CrossRefGoogle Scholar
  54. Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207. https://doi.org/10.1007/s11274-012-1171-6 CrossRefPubMedGoogle Scholar
  55. Ke X, Bittencourt C, Bals S, Van Tendeloo G (2013) Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam induced deposition as studied by TEM. Beilstein J Nanotechnol 4:77–86. https://doi.org/10.3762/bjnano.4.9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Khalil M (2016) Biosynthesis and characterization of Pt and au- Pt nanoparticles and their photo catalytic degradation of methylene blue. Int J Adv Res 2:694–703Google Scholar
  57. Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248. https://doi.org/10.1016/j.tibtech.2013.01.003 CrossRefPubMedGoogle Scholar
  58. Kim JM, Joh HI, Jo SM, Ahn DJ, Ha HY, Hong SA, Kim SK (2010) Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation. Electrochim Acta 55:4827–4835. https://doi.org/10.1016/j.electacta.2010.03.036 CrossRefGoogle Scholar
  59. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20. https://doi.org/10.1016/S0167-7799(00)01514-6 CrossRefPubMedGoogle Scholar
  60. Ko Y-L, Krishnamurthy S, Yun Y-S (2015) Facile synthesis of monodisperse pt and pd nanoparticles using antioxidants. J Nanosci Nanotechnol 15:412–417. https://doi.org/10.1166/jnn.2015.8375 CrossRefPubMedGoogle Scholar
  61. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE, Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transac R Soc Chem 44:17883–17905. https://doi.org/10.1039/C5DT02964C HAL Id: hal-01217114CrossRefGoogle Scholar
  62. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653. https://doi.org/10.1016/j.jbiotec.2006.11.014 CrossRefPubMedGoogle Scholar
  63. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306. https://doi.org/10.3109/07388550903062462 CrossRefPubMedGoogle Scholar
  64. Kou J, Varma RS (2012) Beet juice utilization: expeditious green synthesis of noble metal nanoparticles (ag, au, Pt, and Pd) using microwaves. RSC Adv 2:10283–10290. https://doi.org/10.1039/c2ra21908e CrossRefGoogle Scholar
  65. Krithiga N, Rajalakshmi A, Jayachitra A (2015) Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J Nanosci 2015:1–8. https://doi.org/10.1155/2015/928204 CrossRefGoogle Scholar
  66. Kshirsagar P, Sangaru SS, Malvindi MA, Martiradonna L, Cingolani R, Pompa PP (2011) Synthesis of highly stable silver nanoparticles by photoreduction and their size fractionation by phase transfer method. Colloids Surf A Physicochem Eng Asp 392:264–270. https://doi.org/10.1016/j.colsurfa.2011.10.003 CrossRefGoogle Scholar
  67. Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV) - chloride complex. Langmuir 22:7318–7323. https://doi.org/10.1021/la060873s CrossRefPubMedGoogle Scholar
  68. Leong GJ, Schulze MC, Strand MB, Maloney D, Frisco SL, Dinh HN, Pivovar B, Richards RM (2014) Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts. Appl Organomet Chem 28:1–17. https://doi.org/10.1002/aoc.3048 CrossRefGoogle Scholar
  69. Li Y, Jiang Y, Chen M, Liao H, Huang R, Zhou Z, Tian N, Chen S, Sun S (2012) Electrochemically shape-controlled synthesis of trapezohedral platinum nanocrystals with high electrocatalytic activity. Chem Commun 48:9531. https://doi.org/10.1039/c2cc34322c CrossRefGoogle Scholar
  70. Li X, Wang Y, Li L, Huang W, Xiao Z, Wu P, Wenbo Z, Guo W, Jiang P, Liang M (2017a) Deficient copper decorated platinum nanoparticles for selective hydrogenation of chloronitrobenzene. J Mater Chem A 5:11294–11300. https://doi.org/10.1039/C7TA01587A CrossRefGoogle Scholar
  71. Li Y, Zhang J, Gu J, Chen S, Wang C, Jia W (2017b) Biosynthesis of polyphenol-stabilised nanoparticles and assessment of anti-diabetic activity. J Photochem Photobiol B Biol 169:96–100. https://doi.org/10.1016/j.jphotobiol.2017.02.017 CrossRefGoogle Scholar
  72. Lin X, Wu M, Wu D, Kuga S, Endo T, Huang Y (2011) Platinum nanoparticles using wood nanomaterials: eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction. Green Chem 13:283–287. https://doi.org/10.1039/C0GC00513D CrossRefGoogle Scholar
  73. Liu Y, Li D, Sun S (2011) Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications. J Mater Chem 21:12579–12587. https://doi.org/10.1039/c1jm11605c CrossRefGoogle Scholar
  74. Liu Y, Wu H, Chong Y, Wamer WG, Xia Q, Cai L, Nie Z, Fu PP, Yin JJ (2015) Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl Mater Interfaces 7:19709–19717. https://doi.org/10.1021/acsami.5b05180 CrossRefPubMedGoogle Scholar
  75. Liz-Marzán LM, Lado-Touriño I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12:3585–3589. https://doi.org/10.1021/la951501e CrossRefGoogle Scholar
  76. Mahima S, Kannan R, Komath I, Aslam M, Pillai VK (2008) Synthesis of platinum Y-junction nanostructures using hierarchically designed alumina templates and their enhanced electrocatalytic activity for fuel-cell applications. Chem Mater 20:601–603. https://doi.org/10.1021/cm702102b CrossRefGoogle Scholar
  77. Mahmoud MA, El-Sayed MA (2012) Metallic double shell hollow nanocages: the challenges of their synthetic techniques. Langmuir 28:4051–4059. https://doi.org/10.1021/la203982h CrossRefPubMedGoogle Scholar
  78. Mahmoud MA, Saira F, El-Sayed MA (2010) Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles. Nano Lett 10:3764–3769. https://doi.org/10.1021/nl102497u CrossRefPubMedGoogle Scholar
  79. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44. https://doi.org/10.1039/c1gc15386b CrossRefGoogle Scholar
  80. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Reddy BVS, Raju BDP (2011) Green synthesis of silver nanoparticles using ocimum leaf extract and their characterization. Dig J Nanomater Biostruct 6:181–186Google Scholar
  81. Manikandan M, Hasan N, Wu HF (2013) Platinum nanoparticles for the photothermal treatment of neuro 2A cancer cells. Biomaterials 34:5833–5842. https://doi.org/10.1016/j.biomaterials.2013.03.077 CrossRefPubMedGoogle Scholar
  82. Martins M, Mourato C, Sanches S, Noronha JP, Crespo MTB, Pereira IAC (2016) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168. https://doi.org/10.1016/j.watres.2016.10.071 CrossRefPubMedGoogle Scholar
  83. Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, Desimone JM (2010) Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26:13086–13096. https://doi.org/10.1021/la903890h CrossRefPubMedPubMedCentralGoogle Scholar
  84. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:36–356. https://doi.org/10.1016/j.biotechadv.2013.01.003 CrossRefGoogle Scholar
  85. Moglianetti M, De Luca E, Pedone D, Marotta R, Catelani T, Sartori B, Amenitsch H, Retta SF, Pompa PP (2016) Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 8:3739–3752. https://doi.org/10.1039/C5NR08358C CrossRefPubMedGoogle Scholar
  86. Moon SY, Kusunose T, Sekino T (2009) CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution. Mater Lett 63:2038–2040. https://doi.org/10.1016/j.matlet.2009.06.047 CrossRefGoogle Scholar
  87. Nadagouda MN, Varma RS (2006) Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods. Green Chem 8:516–518. https://doi.org/10.1039/b601271j CrossRefGoogle Scholar
  88. Nadaroglu H, Alayli A, Ince S, Babagil A (2017) Green synthesis and characterisation of platinum nanoparticles using quail egg yolk. Spectrochim Acta A Mol Biomol Spectrosc 172:43–47. https://doi.org/10.1016/j.saa.2016.05.023 CrossRefPubMedGoogle Scholar
  89. Nugroho FAA, Iandolo B, Wagner JB, Langhammer C (2016) Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 10:2871–2879. https://doi.org/10.1021/acsnano.5b08057 CrossRefPubMedGoogle Scholar
  90. Oberhauser W, Evangelisti C, Tiozzo C, Vizza F, Psaro R (2016) Lactic acid from glycerol by ethylene-stabilized platinum-nanoparticles. ACS Catal 6:1671–1674. https://doi.org/10.1021/acscatal.5b02914 CrossRefGoogle Scholar
  91. Oko DN, Garbarino S, Zhang J, Xu Z, Chaker M, Ma D, Guay D, Tavares AC (2015) Dopamine and ascorbic acid electro-oxidation on au, AuPt and Pt nanoparticles prepared by pulse laser ablation in water. Electrochim Acta 159:174–183. https://doi.org/10.1016/j.electacta.2015.01.192 CrossRefGoogle Scholar
  92. Olajire AA, Adeyeye GO, Yusuf RA (2017) Alchornea laxiflora bark extract assisted green synthesis of platinum nanoparticles for oxidative desulphurization of model oil. J Clust Sci 28:1565–1578. https://doi.org/10.1007/s10876-017-1167-3 CrossRefGoogle Scholar
  93. Pal A, Shah S, Devi S (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114:530–532. https://doi.org/10.1016/j.matchemphys.2008.11.056 CrossRefGoogle Scholar
  94. Paschos O, Choi P, Efstathiadis H, Haldar P (2008) Synthesis of platinum nanoparticles by aerosol assisted deposition method. Thin Solid Films 516:3796–3801. https://doi.org/10.1016/j.tsf.2007.06.123 CrossRefGoogle Scholar
  95. Pastoriza-Santos I, Liz-Marzán LM (2009) N, N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688. https://doi.org/10.1002/adfm.200801566 CrossRefGoogle Scholar
  96. Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP (2017) Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 46:4951–4975. https://doi.org/10.1039/C7CS00152E CrossRefPubMedGoogle Scholar
  97. Petroski JM, Wang ZL, Green TC, El-sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320. https://doi.org/10.1021/jp981030f CrossRefGoogle Scholar
  98. Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21:85103–85107. https://doi.org/10.1088/0957-4484/21/8/085103 CrossRefPubMedGoogle Scholar
  99. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles Article ID 963961. https://doi.org/10.1155/2014/963961 CrossRefGoogle Scholar
  100. Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Indian J Phys 84:1355–1360. https://doi.org/10.1007/s12648-010-0126-8 CrossRefGoogle Scholar
  101. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  102. Quester K (2013) Biosynthesis and microscopic study of metallic nanoparticles. Micron 54–55:1–27. https://doi.org/10.1016/j.micron.2013.07.003 CrossRefPubMedGoogle Scholar
  103. Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, Berlin, pp 1–14. https://doi.org/10.1007/978-3-642-18312-6 CrossRefGoogle Scholar
  104. Rakshit RK, Bose SK, Sharma R, Budhani RC, Vijaykumar T, Neena SJ, Kulkarni GU (2008) Correlations between morphology, crystal structure, and magnetization of epitaxial cobalt-platinum films grown with pulsed laser ablation. J Appl Phys 103:023915–023915. https://doi.org/10.1063/1.2832763 CrossRefGoogle Scholar
  105. Ranoszek-Soliwoda K, Tomaszewska E, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, Krzyzowska M, Celichowski G, Grobelny J (2017) The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res 19:273–287. https://doi.org/10.1007/s11051-017-3973-9 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Rashamuse KJ, Whiteley CG (2007) Bioreduction of Pt (IV) from aqueous solution using sulphate-reducing bacteria. Appl Microbiol Biotechnol 75:1429–1435. https://doi.org/10.1007/s00253-007-0963-3 CrossRefPubMedGoogle Scholar
  107. Raut RW, Haroon ASM, Malghe YS, Nikam BT, Kashid SB (2013) Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of asparagus racemosus Linn. Adv Mater Let 4:650–654. https://doi.org/10.5185/amlett.2012.11470 CrossRefGoogle Scholar
  108. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum F. Sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489. https://doi.org/10.1088/0957-4484/17/14/021 CrossRefPubMedGoogle Scholar
  109. Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzym Microb Technol 45:267–273. https://doi.org/10.1016/j.enzmictec.2009.06.006 CrossRefGoogle Scholar
  110. Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzym Microb Technol 46:501–505. https://doi.org/10.1016/j.enzmictec.2010.02.006 CrossRefGoogle Scholar
  111. Şahin B, Aygün A, Gündüz H, Şahin K, Demir E, Akocak S, Şen F (2018) Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B Biointerfaces 163:119–124. https://doi.org/10.1016/j.colsurfb.2017.12.042 CrossRefPubMedGoogle Scholar
  112. Saminathan K, Kamavaram V, Veedu V, Kannan AM (2009) Preparation and evaluation of electrodeposited platinum nanoparticles on in situ carbon nanotubes grown carbon paper for proton exchange membrane fuel cells. Int J Hydrog Energy 34:3838–3844. https://doi.org/10.1016/j.ijhydene.2009.03.009 CrossRefGoogle Scholar
  113. Sheny DS, Philip D, Mathew J (2013) Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications. Spectrochim Acta A Mol Biomol Spectrosc 114:267–271. https://doi.org/10.1016/j.saa.2013.05.028 CrossRefPubMedGoogle Scholar
  114. Shi Y, Lin M, Jiang X, Liang S (2015) Recent advances in FePt nanoparticles for biomedicine. J Nanomater 2015:1–13. Article ID 467873. https://doi.org/10.1155/2015/467873 Google Scholar
  115. Shin Y, Bae IT, Exarhos GJ (2009) “Green” approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions. Colloids Surf A Physicochem Eng Asp 348:191–195. https://doi.org/10.1016/j.colsurfa.2009.07.013 CrossRefGoogle Scholar
  116. Shiny PJ, Mukherjee A, Chandrasekaran N (2014) Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst Eng 37:991–997. https://doi.org/10.1007/s00449-013-1069-1 CrossRefPubMedGoogle Scholar
  117. Shiny PJ, Mukherjee A, Chandrasekaran N (2016) Biosynthesised silver and platinum nanoparticles. RSC Adv 6:27775–27787. https://doi.org/10.1039/C5RA27185A CrossRefGoogle Scholar
  118. Siddiqi KS, Hu sen A (2016) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482–494. https://doi.org/10.1186/s11671-016-1695-z CrossRefPubMedPubMedCentralGoogle Scholar
  119. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599. https://doi.org/10.1016/j.tibtech.2016.02.006 CrossRefPubMedGoogle Scholar
  120. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diospyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164. https://doi.org/10.1007/s00449-009-0373-2 CrossRefGoogle Scholar
  121. Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184. https://doi.org/10.1007/s00436-011-2467-4 CrossRefPubMedGoogle Scholar
  122. Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35:827–833. https://doi.org/10.1007/s00449-011-0666-0 CrossRefPubMedGoogle Scholar
  123. Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (ag, Pd, Fe, Rh, Ni, Ru, Pt, co, and li) by Pseudomonas aeruginosa SM1. J Nanopart Res 14:831–840. https://doi.org/10.1007/s11051-012-0831-7 CrossRefGoogle Scholar
  124. Strobel R, Pratsinis SE (2009) Flame synthesis of supported platinum group metals for catalysis and sensors. Platinum Metals Rev 53:11–20. https://doi.org/10.1595/147106709X392993 CrossRefGoogle Scholar
  125. Subramaniyan SA, Sheet S, Vinothkannan M, Yoo DJ, Lee YS, Belal SA, Shim KS (2018) One-pot facile synthesis of Pt nanoparticles using cultural filtrate of microgravity simulated grown P. chrysogenum and their activity on bacteria and cancer cells. J Nanosci Nanotechnol 18:3110–3125. https://doi.org/10.1166/jnn.2018.14661 CrossRefPubMedGoogle Scholar
  126. Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 97:27–31. https://doi.org/10.1016/j.colsurfb.2012.03.026 CrossRefPubMedGoogle Scholar
  127. Tahir K, Nazir S, Ahmad A, Li B, Khan AU, Khan ZUH, Khan FU, Khan QU, Khan A, Rahman AU (2017) Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J Photochem Photobiol B Biol 166:246–251. https://doi.org/10.1016/j.jphotobiol.2016.12.016 CrossRefGoogle Scholar
  128. Tatsumi H, Liu F, Han HL, Carl LM, Sapi A, Somorjai GA (2017) Alcohol oxidation at platinum-gas and platinum-liquid interfaces: the effect of platinum nanoparticle size, water coadsorption, and alcohol concentration. J Phys Chem C 121:7365–7371. https://doi.org/10.1021/acs.jpcc.7b01432 CrossRefGoogle Scholar
  129. Thirumurugan A, Aswitha P, Kiruthika C, Nagarajan S, Christy AN (2016) Green synthesis of platinum nanoparticles using Azadirachta indica - an eco-friendly approach. Mater Lett 170:175–178. https://doi.org/10.1016/j.matlet.2016.02.026 CrossRefGoogle Scholar
  130. Tiwari DK, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of ag nanoparticles synthesized by top-down approach. Curr Sci 95:647–655Google Scholar
  131. Tiwari JN, Pan F-M, Lin K-L (2009) Facile approach to the synthesis of 3D platinum nanoflowers and their electrochemical characteristics. New J Chem 33:1482–1485. https://doi.org/10.1039/b901534p CrossRefGoogle Scholar
  132. Vadivel M, Babu RR, Ramamurthi K, Arivanandhan M (2016) CTAB cationic surfactant assisted synthesis of CoFe2O4 magnetic nanoparticles. Ceram Int 42:19320–19328. https://doi.org/10.1016/j.ceramint.2016.09.101 CrossRefGoogle Scholar
  133. Velmurugan P, Shim J, Oh B (2016) Prunus x yedoenis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater Lett 174:61–65. https://doi.org/10.1016/j.matlet.2016.03.069 CrossRefGoogle Scholar
  134. Venu R, Ramulu TS, Anandakumar S, Rani VS, Kim CG (2011) Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf A Physicochem Eng Asp 384:733–738. https://doi.org/10.1016/j.colsurfa.2011.05.045 CrossRefGoogle Scholar
  135. Vinod VTP, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB (2011) A facile synthesis and characterization of ag, au and Pt nanoparticles using a natural hydrocolloid gum kondagogu. Colloids Surf B Biointerfaces 83:291–298. https://doi.org/10.1016/j.colsurfb.2010.11.035 CrossRefPubMedGoogle Scholar
  136. Wang C, Daimon H, Onodera T, Koda T, Sun S (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Ed 120:3644–3647. https://doi.org/10.1002/ange.200800073 CrossRefGoogle Scholar
  137. Wang X, Zhang Y, Li T, Tian W, Zhang Q, Cheng Y (2013) Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. Langmuir 29:5262–5270. https://doi.org/10.1021/la3046077 CrossRefPubMedGoogle Scholar
  138. Whiteley C, Govender Y, Riddin T, Rai M (2011) Enzymatic synthesis of platinum nanoparticles: prokaryote and eukaryote systems. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, Berlin, pp 103–134. https://doi.org/10.1007/978-3-642-18312-6_5 CrossRefGoogle Scholar
  139. Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120. https://doi.org/10.1007/s10529-015-1901-6 CrossRefPubMedGoogle Scholar
  140. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1:397–402. https://doi.org/10.1038/nchem.288 CrossRefPubMedGoogle Scholar
  141. Yang J, Sun D, Li J, Yang X, Yu J, Hao Q, Liu W, Liu J, Zou Z, Gu J (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54:6300–6305. https://doi.org/10.1016/j.electacta.2009.05.073 CrossRefGoogle Scholar
  142. Yang C, Wang M, Zhou J, Chi Q (2017) Bio-synthesis of peppermint leaf extract polyphenols capped nano-platinum and their in-vitro cytotoxicity towards colon cancer cell lines (HCT 116). Mater Sci Eng C 77:1012–1016. https://doi.org/10.1016/j.msec.2017.04.020 CrossRefGoogle Scholar
  143. Yanson AI, Rodriguez P, Garcia-Araez N, Mom RV, Tichelaar FD, Koper MTM (2011) Cathodic corrosion: a quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew Chem Int Ed 50:6346–6350. https://doi.org/10.1002/anie.201100471 CrossRefGoogle Scholar
  144. Yola ML, Atar N (2017) Electrochemical detection of atrazine by platinum nanoparticles/carbon nitride nanotubes with molecularly imprinted polymer. Ind Eng Chem Res 56:7631–7639. https://doi.org/10.1021/acs.iecr.7b01379 CrossRefGoogle Scholar
  145. Yu S, Li F, Yang H, Li G, Zhu G, Li J, Zhang L, Li Y (2017) Pt-nanoflower as high performance electrocatalyst for fuel cell vehicle. Int J Hydrog Energy 42:29971–29976. https://doi.org/10.1016/j.ijhydene.2017.06.228 CrossRefGoogle Scholar
  146. Zhang Y, Shi R, Yang P (2014) Synthesis of ag nanoparticles with tunable sizes using N, N-dimethyl formamide. J Nanosci Nanotechnol 14:3011–3016. https://doi.org/10.1166/jnn.2014.8558 CrossRefPubMedGoogle Scholar
  147. Zhang N, Bu L, Guo S, Guo J, Huang X (2016) Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett 16:5037–5043. https://doi.org/10.1021/acs.nanolett.6b01825 CrossRefPubMedGoogle Scholar
  148. Zhao W, Zhou X, Xue Z, Wu B, Liu X, Lu X (2013) Electrodeposition of platinum nanoparticles on polypyrrole-functionalized graphene. J Mater Sci 48:2566–2573. https://doi.org/10.1007/s10853-012-7047-1 CrossRefGoogle Scholar
  149. Zheng B, Kong T, Jing X, Odoom-Wubah T, Li X, Sun D, Lu F, Zheng Y, Huang J, Li Q (2013) Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J Colloid Interface Sci 396:138–145. https://doi.org/10.1016/j.jcis.2013.01.021 CrossRefPubMedGoogle Scholar
  150. Zhi L, Müllen K (2008) A bottom-up approach from molecular nanographenes to unconventional carbon materials. J Mater Chem 18:1472–1484. https://doi.org/10.1039/b717585j CrossRefGoogle Scholar
  151. Zhou ZY, Huang ZZ, Chen DJ, Wang Q, Tian N, Sun SG (2010) High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed 49:411–414. https://doi.org/10.1002/anie.200905413 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Babita Jha
    • 1
  • Anal K. Jha
    • 1
  • Kamal Prasad
    • 2
  1. 1.Aryabhatta Centre for Nanoscience and NanotechnologyAryabhatta Knowledge UniversityPatnaIndia
  2. 2.Department of PhysicsTilka Manjhi Bhagalpur UniversityBhagalpurIndia

Personalised recommendations