Advertisement

Myco-Nanoparticles: A Novel Approach for Inhibiting Amyloid-β Fibrillation

  • Aditya Saran
  • Rajender Boddula
  • Priyanka Dubey
  • Ramyakrishna Pothu
  • Saurabh Gautam
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Protein aggregation has been shown to be a hallmark of several neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. These aggregates are generally amyloidogenic in nature with fibrillar structure and β-sheet conformation. In this chapter we have focused on a possibility of using myco-nanoparticles for limiting the protein aggregation in such cases. Myco-nanoparticles can be used as effective therapeutic agents due to their capability to cross the blood–brain barrier and diminish the production of amyloid plaques rich in fibrillar protein aggregates.

Keywords

Myco-nanoparticles Gold nanoparticles Silver nanoparticles Alloy nanoparticles Fungi Protein aggregation Therapeutics 

References

  1. Adelere I, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 5(6):567–587CrossRefGoogle Scholar
  2. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. https://doi.org/10.1038/nrd3050 CrossRefPubMedGoogle Scholar
  3. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28(4):313–318CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824CrossRefGoogle Scholar
  5. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53CrossRefGoogle Scholar
  6. Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE (2006) Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng 12(11):3247–3256. https://doi.org/10.1089/ten.2006.12.3247 CrossRefPubMedGoogle Scholar
  7. Alzheimer’s Association (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332CrossRefGoogle Scholar
  8. Araya E, Olmedo I, Bastus NG, Guerrero S, Puntes VF, Giralt E, Kogan MJ (2008) Gold nanoparticles and microwave irradiation inhibit beta-amyloid amyloidogenesis. Nanoscale Res Lett 3(11):435CrossRefGoogle Scholar
  9. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles Article ID 689419. https://doi.org/10.1155/2014/689419 CrossRefGoogle Scholar
  10. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  11. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408. https://doi.org/10.1038/nbt1029 CrossRefPubMedGoogle Scholar
  13. Belanova AA, Gavalas N, Makarenko YM, Belousova MM, Soldatov AV, Zolotukhin PV (2018) Physicochemical properties of magnetic nanoparticles: implications for biomedical applications in vitro and in vivo. Oncol Res Treat 41(3):139–143. https://doi.org/10.1159/000485020 CrossRefPubMedGoogle Scholar
  14. Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887PubMedPubMedCentralGoogle Scholar
  15. Bhainsa KC, D’souza S (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47(2):160–164CrossRefGoogle Scholar
  16. Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu L-P, Moghimi SM, Couvreur P, Andrieux K (2011) Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomed Nanotechnol Biol Med 7(5):521–540CrossRefGoogle Scholar
  17. Cabuzu D, Cirja A, Puiu R, Mihai Grumezescu A (2015) Biomedical applications of gold nanoparticles. Curr Top Med Chem 15(16):1605–1613CrossRefGoogle Scholar
  18. Chatani E, Yamamoto N (2018) Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev 10(2):527–534. https://doi.org/10.1007/s12551-017-0353-8 CrossRefPubMedGoogle Scholar
  19. Cheng Y, Dai Q, Morshed RA, Fan X, Wegscheid ML, Wainwright DA, Han Y, Zhang L, Auffinger B, Tobias AL (2014) Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 10(24):5137–5150PubMedPubMedCentralGoogle Scholar
  20. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901 CrossRefPubMedGoogle Scholar
  21. Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111(6):3713–3735CrossRefGoogle Scholar
  22. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43(1):8–18. https://doi.org/10.1016/j.molcel.2011.05.012 CrossRefPubMedGoogle Scholar
  24. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6(1):103–109CrossRefGoogle Scholar
  25. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910CrossRefGoogle Scholar
  26. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9–R23. https://doi.org/10.1016/S1359-0278(98)00002-9 CrossRefPubMedGoogle Scholar
  27. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874CrossRefGoogle Scholar
  28. Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci U S A 107(5):1942–1947. https://doi.org/10.1073/pnas.0904532106 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2(3):243–247CrossRefGoogle Scholar
  30. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28CrossRefGoogle Scholar
  31. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315CrossRefGoogle Scholar
  32. Griffith JS (1967) Self-replication and scrapie. Nature 215(5105):1043–1044CrossRefGoogle Scholar
  33. Gsponer J, Vendruscolo M (2006) Theoretical approaches to protein aggregation. Protein Pept Lett 13(3):287–293CrossRefGoogle Scholar
  34. Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA (2017) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol 45(8):1588–1596CrossRefGoogle Scholar
  35. Hasegawa T, Sato Y, Okada T, Shibukawa M, Li C, Orbulescu J, Leblanc RM (2007) Inhibition of aggregation of a biomimic peptidolipid Langmuir monolayer by Congo red studied by UV-vis and infrared spectroscopies. J Phys Chem B 111(51):14227–14232. https://doi.org/10.1021/jp0759269 CrossRefPubMedGoogle Scholar
  36. Hemath Naveen K, Kumar G, Karthik L, Bhaskara Rao K (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2(6):161–167Google Scholar
  37. Idicula-Thomas S, Balaji PV (2007) Protein aggregation: a perspective from amyloid and inclusion-body formation. Curr Sci 92(6):758–767Google Scholar
  38. Invernizzi G, Papaleo E, Sabate R, Ventura S (2012) Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 44(9):1541–1554. https://doi.org/10.1016/j.biocel.2012.05.023 CrossRefPubMedGoogle Scholar
  39. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406PubMedPubMedCentralGoogle Scholar
  40. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6):1055–1058CrossRefGoogle Scholar
  41. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614CrossRefGoogle Scholar
  42. Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20CrossRefGoogle Scholar
  43. Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6(1):110–115CrossRefGoogle Scholar
  44. Kowalczyk B, Lagzi I, Grzybowski BA (2010) “Nanoarmoured” droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2(11):2366–2369. https://doi.org/10.1039/c0nr00381f CrossRefPubMedGoogle Scholar
  45. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418(6895):291–291CrossRefGoogle Scholar
  46. Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974Google Scholar
  47. Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8(23):3631–3639CrossRefGoogle Scholar
  48. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2009) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160CrossRefGoogle Scholar
  49. Macchi F, Eisenkolb M, Kiefer H, Otzen DE (2012) The effect of osmolytes on protein fibrillation. Int J Mol Sci 13(3):3801–3819. https://doi.org/10.3390/ijms13033801 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Kumar PM, Suresh U, Roni M (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114(11):4305–4317CrossRefGoogle Scholar
  51. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  52. Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK (2017) Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front Mol Biosci 4:14. https://doi.org/10.3389/fmolb.2017.00014 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794(3):375–397. https://doi.org/10.1016/j.bbapap.2008.10.016 CrossRefPubMedGoogle Scholar
  54. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588CrossRefGoogle Scholar
  55. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463CrossRefGoogle Scholar
  56. Nedumpully-Govindan P, Kakinen A, Pilkington EH, Davis TP, Chun Ke P, Ding F (2016) Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci Rep 6:19463. https://doi.org/10.1038/srep19463 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288CrossRefGoogle Scholar
  58. Obulesu M, Jhansilakshmi M (2016) Neuroprotective role of nanoparticles against Alzheimer’s disease. Curr Drug Metab 17(2):142–149CrossRefGoogle Scholar
  59. Oezaslan M, Heggen M, Strasser P (2011) In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater 23(8):2159–2165CrossRefGoogle Scholar
  60. Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 136(pt B):1175–1180. https://doi.org/10.1016/j.saa.2014.10.003 CrossRefPubMedGoogle Scholar
  61. Patel MM, Patel BM (2017) Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs 31(2):109–133. https://doi.org/10.1007/s40263-016-0405-9 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381CrossRefGoogle Scholar
  63. Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10(4):348–351CrossRefGoogle Scholar
  64. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  65. Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11(7):1811CrossRefGoogle Scholar
  66. Rambaran RN, Serpell LC (2008) Amyloid fibrils: abnormal protein assembly. Prion 2(3):112–117CrossRefGoogle Scholar
  67. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(suppl):S10–S17. https://doi.org/10.1038/nm1066 CrossRefPubMedGoogle Scholar
  68. Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044 CrossRefPubMedGoogle Scholar
  69. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012CrossRefGoogle Scholar
  70. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1(5):517–520CrossRefGoogle Scholar
  71. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289(5483):1317–1321CrossRefGoogle Scholar
  72. Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K, Bagherzadeh Z, Nafissi-Varcheh N, Shahverdi AR, Faramarzi MA (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57(2):71–75CrossRefGoogle Scholar
  73. Sharma AK, Pavlova ST, Kim J, Finkelstein D, Hawco NJ, Rath NP, Kim J, Mirica LM (2012) Bifunctional compounds for controlling metal-mediated aggregation of the abeta42 peptide. J Am Chem Soc 134(15):6625–6636. https://doi.org/10.1021/ja210588m CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sonvico F, Dubernet C, Colombo P, Couvreur P (2005) Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Des 11(16):2091–2105CrossRefGoogle Scholar
  75. Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60(22):4369–4376CrossRefGoogle Scholar
  76. Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10(3):230–233CrossRefGoogle Scholar
  77. Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C 47:351–356CrossRefGoogle Scholar
  78. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim acta A Mol Biomol Spectrosc 114:144–147. https://doi.org/10.1016/j.saa.2013.05.030 CrossRefPubMedGoogle Scholar
  79. Takahashi M, Yokota T, Kawano H, Gondo T, Ishihara T, Uchino F (1989) Ultrastructural evidence for intracellular formation of amyloid fibrils in macrophages. Virchows Arch A Pathol Anat Histopathol 415(5):411–419CrossRefGoogle Scholar
  80. Talham DR (2002) Biomineralization: principles and concepts in bioinorganic materials chemistry Stephen Mann. Oxford University Press, New York (2001 ACS Publications)Google Scholar
  81. Tomiyama T, Asano S, Suwa Y, Morita T, Kataoka K, Mori H, Endo N (1994) Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 204(1):76–83. https://doi.org/10.1006/bbrc.1994.2428 CrossRefPubMedGoogle Scholar
  82. Tripathi RM, Gupta RK, Bhadwal AS, Singh P, Shrivastav A, Shrivastav B (2015) Fungal biomolecules assisted biosynthesis of Au–Ag alloy nanoparticles and evaluation of their catalytic property. IET Nanobiotechnol 9(4):178–183CrossRefGoogle Scholar
  83. Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299. https://doi.org/10.1146/annurev-physchem-032210-103539 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37. https://doi.org/10.1111/j.1471-4159.2007.04764.x CrossRefPubMedGoogle Scholar
  85. Villaverde A, Carrio MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25(17):1385–1395CrossRefGoogle Scholar
  86. Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J (2013) Tanshinones inhibit amyloid aggregation by amyloid-beta peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Nerosci 4(6):1004–1015. https://doi.org/10.1021/cn400051e CrossRefGoogle Scholar
  87. Wilkinson J (2003) Nanotechnology applications in medicine. Med Device Technol 14(5):29–31PubMedGoogle Scholar
  88. Xiong N, Dong X-Y, Zheng J, Liu F-F, Sun Y (2015) Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS Appl Mater Interfaces 7(10):5650–5662CrossRefGoogle Scholar
  89. Yallappa S, Manjanna J, Dhananjaya B (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243CrossRefGoogle Scholar
  90. Zhang X, Yan S, Tyagi R, Surampalli R (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494CrossRefGoogle Scholar
  91. Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens Actuators B 148(1):247–252CrossRefGoogle Scholar
  92. Zhou BR, Liang Y, Du F, Zhou Z, Chen J (2007) Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme. Implications for protein folding in intracellular environments (vol 279, pg 55109, 2004). J Biol Chem 282(37):27556–27556Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Aditya Saran
    • 1
  • Rajender Boddula
    • 2
  • Priyanka Dubey
    • 3
  • Ramyakrishna Pothu
    • 4
  • Saurabh Gautam
    • 5
  1. 1.Department of MicrobiologyMarwadi UniversityRajkotIndia
  2. 2.CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and TechnologyBeijingP. R. China
  3. 3.Department of Textile TechnologyIndian Institute of Technology DelhiNew DelhiIndia
  4. 4.College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
  5. 5.Department of Cellular BiochemistryMax Planck Institute of BiochemistryMartinsriedGermany

Personalised recommendations