Advertisement

Nanodiagnostics Tools for Microbial Pathogenic Detection in Crop Plants

  • Sandra Pérez Álvarez
  • Marco Antonio Magallanes Tapia
  • Jesús Alicia Chávez Medina
  • Eduardo Fidel Héctor Ardisana
  • María Esther González Vega
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

To know about the etiology of any pathological event has a great value, since the effectiveness of the regulatory practices designed and their economic, social, and environmental sustainability will depend on it. A sustainably functional disease management system is based on a set of knowledge, in which case diagnosis and disease risk assessment play a fundamental role. Nanodiagnostic using nanodevices and nanosystems are faster, sensitive, and flexible for the detection/identification of crops diseases compared with traditional diagnostic methods; for these reasons the current chapter will give information about nanotechnology applied to diagnosis of diseases caused by fungi and viruses in some important economic crops.

Keywords

Nanodiagnostics Microbial pathogen Calmodulins Polymerase chain reaction (PCR) ELISA Flow cytometry Immunofluorescence Nanosensors Gold nanoparticles Nanochips 

References

  1. Aboul-Ata AE, Mazyad H, El-Attar AK, Soliman AM, Anfoka G, Zeidaen M, Gorovits R, Sobol I, Czosnek H (2011) Diagnosis and control of cereal viruses in the Middle East. Adv Virus Res 81:33–61PubMedCrossRefGoogle Scholar
  2. Adams FC, Barbante C (2013) Nanoscience, nanotechnology and spectrometry. Spectrochim Acta B 86:3–13CrossRefGoogle Scholar
  3. Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above-and belowground enemies. Ecology 86:2979–2989CrossRefGoogle Scholar
  4. Agrios GN (2005) Plant pathology, 5th edn. Academic Press, New York, p 803Google Scholar
  5. Alghuthaymi MA (2017) Nanotools for molecular identification two novels Cladosporium cladosporioides species (Cladosporiaceae) collected from tomato phyloplane. J Yeast Fungal Res 8(2):11–18CrossRefGoogle Scholar
  6. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16(12):3460–3479PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB (2010) Plants versus pathogens: an evolutionary arms race. Funtc Plant Biol 39(6):499–512CrossRefGoogle Scholar
  9. Ariffin SAB, Adam T, Hashim U, Faridah S, Zamri I, Uda MNA (2014) Plant diseases detection using nanowire as biosensor transducer. Adv Mater Res 832:113–117CrossRefGoogle Scholar
  10. Asselbergh B, de Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Mic Interact 21(6):709–719CrossRefGoogle Scholar
  11. Azoulay-Shemer T, Bagheri A, Wang C, Palomares A, Stephan AB, Kunz HH, Schroeder JI (2016) Starch biosynthesis in guard cells but not in mesophyll cells is involved in CO2-induced stomatal closing. Plant Physiol 171:788–798PubMedPubMedCentralGoogle Scholar
  12. Baeummer A (2004) Nanosensors identify pathogens in food. Food Technol 58:51–55Google Scholar
  13. Bakshi M, Oelmüller R (2014) WRKY transcription factors. Plant Signal Behav 9:2CrossRefGoogle Scholar
  14. Baniukevic J, Hakki Boyaci I, Goktug Bozkurt A, Tamer U, Ramanavicius A, Ramanaviciene A (2013) Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens Bioelectron 43:281–288PubMedCrossRefGoogle Scholar
  15. Benson DM, Jones RK (2001) Diseases of woody ornamentals and trees in nurseries. APS Press, St. Paul, MNGoogle Scholar
  16. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials forsensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764CrossRefGoogle Scholar
  17. Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159:266–285PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boller T, Felix GA (2009) Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann Rev Plant Biol 60:379–406CrossRefGoogle Scholar
  19. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. In: European Journal of Plant Pathology. Springer, Dordrecht, pp 355–363Google Scholar
  20. Bové JM, Vogel R, Albertini D, Bové JM (1988) Discovery of a strain of Tristeza virus (K) inducing no symptoms in Mexican lime. Proceedings of the 10th Conference of IOCV. Spain 1988. International Organization of Citrus Virologists, Riverside, CA, pp 14–16Google Scholar
  21. Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaidez F, Sreedharan A, Rangaswamy V, Penaloza-Vazquez A, Bende CL, Kunkel BN (2004) Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 17:162–174PubMedCrossRefGoogle Scholar
  22. Bürling K, Hunsche M, Noga G (2011) Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J Plant Physiol 168:1641–1648PubMedCrossRefGoogle Scholar
  23. Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417(1):1–16PubMedCrossRefGoogle Scholar
  24. Chaerle L, Lenk S, Leinonen I, Jones HG, Van Der Straeten D, Buschmann DC (2009) Multisensor plant imaging: towards the development of a stress catalogue. Biotechnol J 4:1152–1167PubMedCrossRefGoogle Scholar
  25. Chartuprayoon N, Rheem Y, Ng J, Nam J, Chen W, Myung N (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5(14):3497–3502CrossRefGoogle Scholar
  26. Chater CC, Oliver J, Casson S, Gray JE (2014) Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytol 202:376–391PubMedCrossRefGoogle Scholar
  27. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  28. Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou JM (2009) Ethylene insensitive3 and ethylene insensitive3-like1 repress salicylic acid induction deficient2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chitarra LG, van den Bulk RW (2003) The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria. Eur J Plant Pathol 109:407–417CrossRefGoogle Scholar
  30. Clark MF, Adams A (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483PubMedCrossRefGoogle Scholar
  31. Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270PubMedCrossRefGoogle Scholar
  32. Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32PubMedCrossRefGoogle Scholar
  33. Cséfalvay L, Gaspero GD, Matous K, Bellin D, Ruperti B, Olejnickova J (2009) Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. Eur J Plant Pathol 125:291–302CrossRefGoogle Scholar
  34. D’Hondt L, Höfte M, Van Bockstaele E, Leus L (2011) Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status. Mol Plant Pathol 12(8):815–828PubMedCrossRefGoogle Scholar
  35. Dameron CT, Reeser RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597CrossRefGoogle Scholar
  36. Delalieux S, van Aardt J, Keulemans W, Schrevens E, Coppin P (2007) Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur J Agron 27:130–143CrossRefGoogle Scholar
  37. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91PubMedCrossRefGoogle Scholar
  38. Dewey F, Marshall G (1996) Production and use of monoclonal antibodies for the detection of fungi. In: Proceeding of British Crop Protection Council Symposium, Farnham, UK, pp 18–21Google Scholar
  39. Dharanivasan G, Mohammed Riyaz SU, Jesse DMIT, Muthuramalingam R, Rajendran G, Kathiravan K (2016) DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 6:11773CrossRefGoogle Scholar
  40. Drygin YF, Blintsov AN, Osipov AP, Grigorenko VG, Andreeva IP, Uskov AI, Varitsev YA, Anisimov BV, Novikov VK, Atabekov JG (2009) High-sensitivity express immunochromatographic method for detection of plant infection by Tobacco mosaic virus. Biochem Mosc 74:986–993CrossRefGoogle Scholar
  41. Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Chang L, Jia W, Kang L, Jing L, Chuan L (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26:3167–3184PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76(1):29–33PubMedCrossRefGoogle Scholar
  43. Edmundson MC, Capeness M, Horsfall L (2014) Exploring the potential of metallic nanoparticles within synthetic biology. New Biotechnol 31(6):572–578CrossRefGoogle Scholar
  44. Ellis SD, Boehm MJ, Qu F (2008) Agriculture and natural resources: viral diseases of plants (PP401.05) [Fact Sheet]. Ohio State Univ. http://www.learnnc.org/lp/media/uploads/2010/11/viral-disease-fact-sheet.pdf
  45. Erwin DC, Ribeiro OK (1996) Phytophthora: diseases worldwide. APS Press, St. Paul, MNGoogle Scholar
  46. Esker PD, Sparks AH, Campbell L, Guo Z, Rouse M, Silwal SD, Tolos S, Van Allen B, Garrett KA (2008) Ecology and epidemiology in R: disease forecasting and validation. [Online]. Plant Health Instructor. https://doi.org/10.1094/PHIA_029-01
  47. Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iranica 20(3):1055–1058Google Scholar
  48. Eun AJ-C, Wong S-M (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90:269–275PubMedCrossRefGoogle Scholar
  49. Eun AJ-C, Huang L, Chew F-T, Li SF-Y, Wong S-M (2002) Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods 99:71–79PubMedCrossRefGoogle Scholar
  50. Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139:3804–3810PubMedCrossRefGoogle Scholar
  51. Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378PubMedCrossRefGoogle Scholar
  52. Farr DF, Rossman AY (2014) Fungal databases, systematic mycology and microbiology laboratory. ARS, USDA, Washington, DC http://nt.ars-grin.gov/fungaldatabases/ Google Scholar
  53. FHIA (2007) Deterioro poscosecha de las frutas y hortalizas frescas por hongos y bacterias. 4:2-5. http://fhia.org.hn/dowloads/fhiainfdic2007.pdf
  54. Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54Google Scholar
  55. Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428PubMedCrossRefGoogle Scholar
  56. Fujita DB (1990) In: Jones AL, Aldwinkle HS (eds) Crown, collar, and root rot. Compendium of apple and pear diseases. APS Press, St. Paul, MNGoogle Scholar
  57. García CV (2004). Introducción a la microbiología. Segunda Edición. Editorial EUNED, Costa Rica, pp 103–107Google Scholar
  58. Gilbert GS, Parker IM (2010) Rapid evolution in a plant-pathogen interaction and the consequences for introduced host species. Evol Appl 3:144–156PubMedPubMedCentralCrossRefGoogle Scholar
  59. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227CrossRefPubMedGoogle Scholar
  60. Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Barron AE, Mirkin CA, Liu C (2006) A biobarcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10):1293–1299PubMedCrossRefGoogle Scholar
  61. Gorris MT, Alarcon B, Lopez M, Cambra M (1994) Characterization of monoclonal antibodies specific for Erwinia carotovora subsp. atroseptica and comparison of serological methods for its sensitive detection on potato tubers. App Environ Microbiol 60:2076–2085Google Scholar
  62. Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45(1–2):148–157PubMedCrossRefGoogle Scholar
  63. Grant MR, Kazan K, Manners JM (2013) Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Microb Biotechnol 6(3):212–222PubMedPubMedCentralCrossRefGoogle Scholar
  64. Grimmer MK, John Foulkes M, Paveley ND (2012) Foliar pathogenesis and plant water relations: a review. J Exp Bot 63:4321–4331PubMedCrossRefGoogle Scholar
  65. Guimaraes RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711PubMedPubMedCentralCrossRefGoogle Scholar
  66. Haji-Hashemi H, Norouzia P, Safarnejadc MR, Ganjalia MR (2017) Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode. Sensors Actuators B 244:211–216CrossRefGoogle Scholar
  67. Hassen WM, Duplan V, Frost E, Dubowski JJ (2011) Quantitation of influenza a virus in the presence of extraneous protein using electrochemical impedance spectroscopy. Electrochim Acta 56:8325–8328CrossRefGoogle Scholar
  68. Hayat MA (1989) Colloidal gold: principles, methods, and applications, vol 1. Academic Press, San Diego, CA, 538 pGoogle Scholar
  69. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63 pGoogle Scholar
  70. Hull R (2002) Matthews’ plant virology, 4th edn. Academia Press, San Diego, CA, 1001 pGoogle Scholar
  71. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165CrossRefGoogle Scholar
  72. Jain K (2003) Nanodiagnostics: application of nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn 3(2):153–161PubMedCrossRefGoogle Scholar
  73. James C (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502CrossRefGoogle Scholar
  74. Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhard N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jammes F, Yang X, Xiao S, Kwak JM (2011) Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav 6:1875–1877PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jeeva ML, Mishra AK, Vidyadharan P, Misra RS, Hegde V (2010) A species-specific polymerase chain reaction assay for rapid and sensitive detection of Sclerotium rolfsii. Aust Plant Pathol 39(6):517–523CrossRefGoogle Scholar
  77. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefGoogle Scholar
  78. Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395. https://doi.org/10.1126/science.aaf6395 CrossRefPubMedGoogle Scholar
  79. Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. A Nanoforum report, Institute of Nanotechnology. www.nanoforum.org
  80. Kageyama K, Senda M, Asano T, Suga H, Ishiguro K (2007) Intra-isolateheterogeneity of the ITS region of rDNA in Pythium helicoides. Mycological Res 111:416–423CrossRefGoogle Scholar
  81. Karpovich-Tate N, Spanu P, Dewey FM (1998) Use of monoclonal antibodies to determine biomass of Cladosporium fulvum in infected tomato leaves. Mol Plant Pathog Interact 11:710–716CrossRefGoogle Scholar
  82. Kashyap PL, Kaur S, Sanghera GS, Kang SS, Pannu PPS (2011) Novel methods for quarantine detection of Karnal bunt (Tilletia indica) of wheat. Elixir Agric 31:1873–1876Google Scholar
  83. Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207PubMedCrossRefGoogle Scholar
  84. Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13CrossRefGoogle Scholar
  85. Kattke MD, Gao EJ, Sapsford KE, Stephenson LD, Kumar A (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 11(6):6396–6410PubMedCrossRefGoogle Scholar
  86. Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–2309PubMedPubMedCentralCrossRefGoogle Scholar
  87. Khiyami MA, Almoammar H, Awad YM, Alghuthaym MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785PubMedPubMedCentralCrossRefGoogle Scholar
  88. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35CrossRefGoogle Scholar
  89. Kim JT, Park SY, Choi W, Lee YH, Kim HT (2008) Characterization of Colletotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol J 24(1):17–23CrossRefGoogle Scholar
  90. Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Ann Rev Plant Biol 61:561–591CrossRefGoogle Scholar
  91. Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376CrossRefPubMedGoogle Scholar
  92. Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precis Agric 10:34–44CrossRefGoogle Scholar
  93. Landa BB, Montes-Borrego M, Muñoz-Ledesma FJ, Jiménez-Díaz RM (2007) Phylogenetic analysis of downy mildew pathogens of opium poppy and PCRBased in planta and seed detection of Peronospora arborescens. Phytopathology 97(11):1380–1390PubMedCrossRefGoogle Scholar
  94. Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD, Huet AC, Delahaut P, Granier B, Visconti A (2012) Multiplex dipstick immunoassay for semi-quantitative determination of fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108PubMedCrossRefGoogle Scholar
  95. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16(2):123–133CrossRefGoogle Scholar
  96. Li Y, Schluesener H, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:2941. https://doi.org/10.1007/BF03214964 CrossRefGoogle Scholar
  97. Lievens B, Brouwer M, Vanachter ACRC, Levesque CA, Cammue BPA, Thomma BPHJ (2005a) Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ Microbiol 7:1698–1710PubMedCrossRefGoogle Scholar
  98. Lievens B, Grauwet TJMA, Cammue BPA, Thomma BPHJ (2005b) Recent developments in diagnostics of plant pathogens: a review. Recent Res Dev Microbiol 9:57–79Google Scholar
  99. Lin H-Y, Huang C-H, Huang C-C, Liu Y-C, Chau L-K (2012) Multiple resonance fiber-optic sensor with time division multiplexing for multianalyte detection. Opt Lett 37(19):3969–3971PubMedCrossRefGoogle Scholar
  100. Lin H-Y, Huang C-H, Lu S-H, Kuo I-T, Chau L-K (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378PubMedCrossRefGoogle Scholar
  101. Liu J, Zhang T, Jia J, Sun J (2016) The wheat mediator subunit TaMED25 interacts with the transcription factor TaEIL1 to negatively regulate disease resistance against powdery mildew. Plant Physiol 170:1799–1816PubMedPubMedCentralGoogle Scholar
  102. Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4(2–3):111–116PubMedCrossRefGoogle Scholar
  103. López MM, Llop P, Cubero J, Penyalver R, Caruso P, Bertolini E, Penalver J, Gorris MT, Cambra M (2001) Strategies for improving serological and molecular detection of plant pathogenic bacteria. In: Plant pathogenic bacteria. Springer, Berlin, pp 83–86CrossRefGoogle Scholar
  104. López MM, Bertolini E, Olmos A, Caruso P, Corris MT, Llop P, Renyalver R, Cambra M (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol 6:233–243PubMedCrossRefGoogle Scholar
  105. López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46PubMedGoogle Scholar
  106. Maeda Y, Toyoda T, Mogi T, Taguchi T, Tanaami T, Yoshino T, Matsunaga T, Tanak T (2016) DNA recovery from a single bacterial cell using charge-reversible magnetic nanoparticles. Colloids Surf B Biointerfaces 139:117–122PubMedCrossRefGoogle Scholar
  107. Mahlein AK, Oerke E, Steiner U, Dehne H (2012) Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–209CrossRefGoogle Scholar
  108. Martin FN, Tooley PW (2003) Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95:269–284PubMedCrossRefGoogle Scholar
  109. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2014) Advanced methods of plant disease detection: a review. Agron Sustain Dev 35(1):1–25CrossRefGoogle Scholar
  110. Mazarei M, Teplova I, Hajimorad MR, Stewart CN Jr (2008) Pathogen phytosensing: plants to report plant pathogens. Sensors 8:2628–2641PubMedCrossRefGoogle Scholar
  111. McCartney AH, Foster SJ, Fraaige BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59:129–142PubMedCrossRefGoogle Scholar
  112. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062CrossRefGoogle Scholar
  113. McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Horak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM (2016) The breakdown of stored triacylglycerols is required during light-induced stomatal opening. Curr Biol 26:707–712PubMedPubMedCentralCrossRefGoogle Scholar
  114. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980PubMedCrossRefGoogle Scholar
  115. Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294CrossRefPubMedGoogle Scholar
  116. Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191CrossRefPubMedGoogle Scholar
  117. Mousavi SE, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419Google Scholar
  118. Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14:2887–2904PubMedCrossRefGoogle Scholar
  119. Ni W, Chen H, Kou X, Yeung W, Wang J (2008) Optical fiber-excited surface plasmon resonance spectroscopy of single and ensemble gold nanorods. J Phys Chem C 112(22):8105–8109CrossRefGoogle Scholar
  120. Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F, Wax A, Chilkoti A (2008) Anal Chem 80:984–989PubMedPubMedCentralCrossRefGoogle Scholar
  121. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  122. Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection. Estimated losses in major food and cash crops. Elsevier, AmsterdamGoogle Scholar
  123. Pal S, Ying W, Alocilja EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99(4):461–468CrossRefGoogle Scholar
  124. Parab HJ, Jung C, Lee JH, Park HG (2010) A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron 26:667–673PubMedCrossRefGoogle Scholar
  125. Parker IM, Gilbert GS (2007) When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology 88:1210–1224PubMedCrossRefGoogle Scholar
  126. Pasquali M, Piatti P, Gullino ML, Garibaldi A (2006) Development of a real-time polymerase chain reaction for the detection of Fusarium oxysporum f. Sp basilica from basil seed and roots. J Phytopathol 154:632–636CrossRefGoogle Scholar
  127. Pearson MN, Clover GRG, Guy PL, Fletcher JD, Beever RE (2006) A review of the plant virus, viroid and mollicute records for New Zealand. Australas. Plant Pathol 35:217–252Google Scholar
  128. Perdikaris A, Vassilakos N, Yiakoumettis I, Kektsidou O, Kintzios S (2011) Development of a portable, high throughput biosensor system for rapid plant virus detection. J Virol Methods 177(1):94–99PubMedCrossRefGoogle Scholar
  129. Pimentel D (2009) Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Inderjit (ed) Management of invasive weeds, invading nature, Springer Series in invasion ecology, vol 5. Springer, Dordrecht, pp 1–7CrossRefGoogle Scholar
  130. Powers T (2006) Nematode molecular diagnostics: from bands to barcodes. Annu Rev Phytopathol 42:367–383CrossRefGoogle Scholar
  131. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  132. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, I.A.R.I., New Delhi http://www.iasri.res.in/ebook/EBADAT/6-Other Useful Techniques/10-nanotech_in_Agriculture__BM_Prasanna__1.2.2007.pdf Google Scholar
  134. Rafidah AR, Faridah S, Shahrul AA, Mazidah M, Zamri I (2016) Chronoamperometry measurement for rapid cucumber mosaic virus detection in plants. Proc Chem 20:25–28CrossRefGoogle Scholar
  135. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293PubMedCrossRefGoogle Scholar
  136. Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta 605:111–127PubMedCrossRefGoogle Scholar
  137. Rowe HC, Kliebenstein DJ (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180:2237–2250PubMedPubMedCentralCrossRefGoogle Scholar
  138. Ruiz-García AB, Olmos A, Arahal DR, Antúnez O, Llop P, Pérez-Ortín JE, López MM, Cambra M (2004) Biochip electrónico para la detección y caracterización simultánea de los principales virus y bacterias patógenos de la patata. XII Congreso de la Sociedad Española de Fitopatología. Lloret de Mar. 12 pGoogle Scholar
  139. Safarnejad MR, Samiee F, Tabatabie M, Mohsenifar A (2017) Development of quantum dot-based Nanobiosensors against Citrus Tristeza virus (CTV). Sensors & Transducers Published by IFSA Publishing, S. L. http://www.sensorsportal.com
  140. Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Mohsenifar A, Rad R, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515CrossRefGoogle Scholar
  141. Sankaran S, MishraA ER, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13CrossRefGoogle Scholar
  142. Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83(3):265–277PubMedCrossRefGoogle Scholar
  143. Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258CrossRefGoogle Scholar
  144. Schuman GL, D’Arcy CJ (2010) Essential plant pathology, 2nd edn. The American Phytopathological Society, St. Paul, MN, 369 pGoogle Scholar
  145. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (2002) On the safety of Aspergillus niger: a review. Appl Microbiol Biotechnol 59(4–5):426–435PubMedPubMedCentralGoogle Scholar
  146. Sekhon BS (2010) Food nanotechnology: an overview. J Nanotechnol Sci Appl 3:1–15Google Scholar
  147. Sharma A, Kaushal A, Kulshrestha S (2017) A nano-Au/C-MWCNT based label free amperometric immunosensor for the detection of capsicum chlorosis virus in bell pepper. Arch Virol 162:2047–2052PubMedCrossRefGoogle Scholar
  148. Shimada TL, Hara-Nishimura I (2015) Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr Opin Plant Biol 25:145–150PubMedCrossRefGoogle Scholar
  149. Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016a) Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim Acta A Mol Biomol Spectrosc 169:216–222PubMedCrossRefGoogle Scholar
  150. Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016b) Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183:2277CrossRefGoogle Scholar
  151. Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immuno sensor for Karnal bunt (Tilletia indica) diagnosis based on the experience nano-gold based lateral flow immune dipstick test. Thin Solid Films 519(3):1156–1159CrossRefGoogle Scholar
  152. Small J, Call DR, Brockman FJ, Straub TM, Chandler DP (2001) Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol 67(10):4708–4716PubMedPubMedCentralCrossRefGoogle Scholar
  153. Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci U S A 94:1119–1123PubMedPubMedCentralCrossRefGoogle Scholar
  154. Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20:365–389PubMedCrossRefGoogle Scholar
  155. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116PubMedCrossRefGoogle Scholar
  156. Sun X, Du S, Wang X, Zhao W, Li Q (2011) A label-free electrochemical immunosensor for carbofuran detection based on a sol-gel entrapped antibody. Sensors 11:9520–9531PubMedCrossRefGoogle Scholar
  157. Swierczewska M, Liu G, Chen X (2012). High-sensitivity nanosensors for biomarker detection. Chemical Society Review 41:2641–2655PubMedCrossRefGoogle Scholar
  158. Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638PubMedCrossRefGoogle Scholar
  159. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2006) Cytokinin and auxin inhibit abscisic acid induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot 57:2259–2266PubMedCrossRefGoogle Scholar
  160. Tang J, Wang F, Hou X, Wang Z, Huang Z (2014) Genome-wide fractionation and identification of WRKY transcription factors in chinese cabbage (Brassica rapa ssp. pekinensis) reveals collinearity and their expression patterns under abiotic and biotic stresses. Plant Mol Biol Rep 32(4):781–795CrossRefGoogle Scholar
  161. Tang D, Wang G, Zhou J (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29:618–637PubMedPubMedCentralCrossRefGoogle Scholar
  162. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317CrossRefPubMedGoogle Scholar
  163. Torres-Calzada C, Tapia-Tussell R, Quijano-Ramayo A, Martin-Mex R, Rojas-Herrera R, Higuera Ciapara I, Perez-Brito D (2011) A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici. Mol Biotechnol 49(1):48–55PubMedCrossRefGoogle Scholar
  164. Trdá L, Fernandez O, Boutrot F, Héloir MC, Kelloniemi J, Daire X, Adrian M, Clément C, Zipfel C, Dorey S, Poinssot B (2014) The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol 201:1371–1384PubMedPubMedCentralCrossRefGoogle Scholar
  165. Truman W, Sreekanta S, Lu Y, Bethke G, Tsuda K, Katagiri F, Glazebrook J (2013) The calmodulin-binding protein60 family includes both negative and positive regulators of plant immunity. Plant Physiol 163:1741–1751PubMedPubMedCentralCrossRefGoogle Scholar
  166. Uhl J, Tang Y, Cockerill ER (2011) Fluorescence resonance energy transfer. In: Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (eds) Molecular microbiology. ASM Press, Washington, DC, pp 231–244. https://doi.org/10.1128/9781555816834.ch14 CrossRefGoogle Scholar
  167. Validov SZ, Kamilova FD, Lugtenberg BJJ (2011) Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection. Microb Biotechnol 4(1):82–88PubMedCrossRefGoogle Scholar
  168. van der Want JPH, Dijkstra J (2006) A history of plant virology. Arch Virol 51:1467–1498CrossRefGoogle Scholar
  169. van der Wolf J, van Bechhoven JRCM, Bonants PJM, Schoen CD (2001) New technologies for sensitive and specific routine detection of plant pathogenic bacteria. In: Plant pathogenic bacteria. Springer, Berlin, pp 75–77CrossRefGoogle Scholar
  170. van Kleunen M, Fischer M (2009) Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized north American plants in Europe. J Ecol 97:385–392CrossRefGoogle Scholar
  171. van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191PubMedCrossRefGoogle Scholar
  172. Vernon C, Vizcarra-Mendoza M (2000) Separation kinetics of Karnal bunt (Tilletia indica) infected wheat (Triticum aestivum) grains in a batch operated fluidized bed. Food Sci Technol Int 6(2):137–143CrossRefGoogle Scholar
  173. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206CrossRefPubMedGoogle Scholar
  174. Wan D, Li R, Zou B, Zhang X, Cong J, Wang R, Xia Y, Li G (2012) Calmodulin binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31:1269–1281PubMedCrossRefGoogle Scholar
  175. Wang L, Li PC (2010) Gold nanoparticle-assisted single base-pair mismatch discrimination on a microfluidic microarray device. Anal Biochem 400(2):282–288PubMedCrossRefGoogle Scholar
  176. Wang L, O’Donoghue MM, Tan W (2006) Nanoparticles for multiplex diagnostics and imaging. Nanomedicine 1(4):413–426PubMedCrossRefGoogle Scholar
  177. Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5(2):e1000301PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wang J, Wang X, Li Y, Yan S, Zhou Q, Gao B, Peng J, Du J, Fu Q, Jia S, Zhang J, Zhan L (2012) A novel, universal and sensitive lateral-flow based method for the detection of multiple bacterial contamination in platelet concentrations. Anal Sci 28:237–241PubMedCrossRefGoogle Scholar
  179. Warad HC, Ghosh SC, Thanachayanont C, Dutta J, Hilborn JG (2004) Highly luminescence manganese doped ZnS quantum dots for biological labeling. In: Proceedings of the International Conference on Smart Materials/Intelligent Materials, Chiang Mai, Thailand, 1–3 December 2004, pp 203–206Google Scholar
  180. Ward E, Foster SJ, Fraaije BA, Mccartney HA (2004) Plant pathogen diagnostics: immunological and nucleic acid based approaches. Ann Appl Biol 145:1–16CrossRefGoogle Scholar
  181. Wei Y, Shi H, Xia Z, Tie W, Ding Z, Yan Y, Wang W, Hu W, Li K (2016) Genome-wide identification and expression analysis of the WRKY gene family in Cassava. Front Plant Sci 7:25PubMedPubMedCentralGoogle Scholar
  182. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  183. Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160:705–711PubMedGoogle Scholar
  184. Yadav A, Kon K, Kratosova G, Duran N et al (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120PubMedCrossRefGoogle Scholar
  185. Yang H, Li H, Jiang X (2008) Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid Nanofluid 5(5):571–583CrossRefGoogle Scholar
  186. Yang C, Lu X, Ma B, Chen SY, Zhang JS (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8:495–505PubMedCrossRefGoogle Scholar
  187. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for a rapid detection of plant pathogens. Adv Mater Res 79:513–516CrossRefGoogle Scholar
  188. Yuen GY, Craig ML, Avila F (1993) Detection of Pythium ultimum with a species-specific monoclonal antibody. Plant Dis 77:692–698CrossRefGoogle Scholar
  189. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar
  190. Zeng C, Huang X, Xu J, Li G, Ma J, Ji HF, Zhu S, Chen H (2013) Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem 440:18–22PubMedCrossRefGoogle Scholar
  191. Zhang M, Qin Z, Liu X, Ustin SL (2003) Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int J Appl Earth Observ Geoinf 4:295–310CrossRefGoogle Scholar
  192. Zhao J, Wang XJ, Chen CQ, Huang LL, Kang ZS (2007) A PCR-based assay for detection of Puccinia striiformis f. sp tritici in wheat. Plant Dis 91(12):1969–1674CrossRefGoogle Scholar
  193. Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605CrossRefPubMedGoogle Scholar
  194. Zhu M, Zhang WN, Tian JY, Zhao WY, Chen ZQ, Sun LH, Liu FQ (2016) Development of a lateral-flow assay (LFA) for rapid detection of soybean mosaic virus. J Virol Methods 235:51–57PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sandra Pérez Álvarez
    • 1
  • Marco Antonio Magallanes Tapia
    • 1
  • Jesús Alicia Chávez Medina
    • 1
  • Eduardo Fidel Héctor Ardisana
    • 2
  • María Esther González Vega
    • 3
  1. 1.Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Depto. de Biotecnología AgrícolaGuasaveMexico
  2. 2.Facultad de Ingeniería AgronómicaUniversidad Técnica de ManabíPortoviejoEcuador
  3. 3.Instituto Nacional de Ciencias Agrícolas (INCA), Carretera a TapasteSan José de las LajasCuba

Personalised recommendations