Hydrothermal Nanotechnology: Putting the Last First

  • Sumit K. Roy
  • Kamal Prasad
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology has been around us since 50 years and different scientific institutions and researchers have tried to define it uniquely. One such definition provided by the European Commission is “Nanotechnology is the study of the phenomena and fine tuning of materials at atomic, molecular and macromolecular scale, where properties differ significantly from those at the larger scale”. Nanoparticles can be synthesized by various methods, namely physical, chemical, and biological or combination of them. Hydrothermal technique is a popular method of obtaining nanomaterials which epitomizes the natural conditions existing under the earth’s crust and meets the global concern and awareness for the development of environment-friendly materials. It refers to any heterogeneous reaction in the presence of aqueous solvents under elevated pressure and temperature conditions to dissolve and recrystallize materials that are relatively insoluble under ordinary conditions. As there are a number of processing variables which can be controlled during hydrothermal synthesis, it can be hybridized with several other processes to obtain highly crystalline products with narrow size distribution, high purity, and low aggregation. In this chapter we build a notion of hydrothermal synthesis and how it can be hybridized with other techniques of material synthesis and summarize the report furnished by different researchers on these aspects. At last we provide a comprehensive study of Ba(Fe1/2Nb1/2)O3 prepared by solid-state reaction method, hydrothermal method and mechanochemical method.


Hydrothermal Nanomaterials Sol-gel Nanoceramics Photochemical synthesis Hydrothermal hot-pressing Top-down Bottom-up 


  1. Abdel-Aala EA, El-Midanya AA, El-Shall E (2008) Mechanochemical–hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Mater Chem Phys 112:202–207CrossRefGoogle Scholar
  2. Allen ET, Crenshaw JL, Johnston J (1912) The mineral sulphides of iron; with crystallographic study by ES Larsen. Am J Sci 195:169–236CrossRefGoogle Scholar
  3. Barber DJ, Freestone IC (1990) An investigation of the origin of the colour of Lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45CrossRefGoogle Scholar
  4. Bard AJ, Faulkner LR, Leddy LR, Zoski CG (1980) Electrochemical methods-fundamentals and applications, vol 2. Wiley, New YorkGoogle Scholar
  5. Barrer RM (1948) Syntheses and reactions of mordenite. J Chem Soc 435:2158–2163CrossRefGoogle Scholar
  6. Basca R, Ravindranathan P, Dougherty JP (1992) Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates. J Mater Res 7:423–428CrossRefGoogle Scholar
  7. Bera D, Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3:2260–2345CrossRefPubMedCentralGoogle Scholar
  8. Bhagat S, Prasad K (2010) Structural and impedance spectroscopy analysis of Ba(Fe1/2Nb1/2)O3 ceramic. Phys Status Solidi A 207:1232–1239CrossRefGoogle Scholar
  9. Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, ChichesterGoogle Scholar
  10. Bochenek D, Niemiec P, Adamczyk M, Szafraniak-Wiza I (2018) Physical properties of lead-free BaFe1/2Nb1/2O3 ceramics obtained from mechanochemically synthesized powders. J Mater Sci:1–12. CrossRefGoogle Scholar
  11. Bondioli F, Ferrari AM, Lusvarghi L, Manfredini T, Nannarone S, Pasqualia L, Selvaggi G (2005) Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route. J Mater Chem 15:1061–1066CrossRefGoogle Scholar
  12. Boysen E, Boysen N (2011) Nanotechnology for dummies, 2nd edn. Wiley, ChichesterGoogle Scholar
  13. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802CrossRefGoogle Scholar
  14. Bunde A, Havlin S (1996) Fractals and disordered systems. Berlin, SpringerCrossRefGoogle Scholar
  15. Bunsen R (1848) Bemerkungen Zu Cinigen Einwürten Gegen Mehrere Ansichtenüber die Chemisch-geologischon Erscheinungen in Island. Eur J Org Chem 65:70–85Google Scholar
  16. Byrappa K (1992) Hydrothermal growth of crystals. Prog Cryst Growth Charact Mater 21:R7–R10Google Scholar
  17. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRefGoogle Scholar
  18. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. Norwich, William AndrewGoogle Scholar
  19. Cao SW, Zhu YJ, Cui JB (2010) Iron hydroxyl phosphate microspheres: microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties. J Solid State Chem 183:1704–1709CrossRefGoogle Scholar
  20. Charoenthai N, Traiphol R, Rujijanagul G (2008) Microwave synthesis of barium iron niobate and dielectric properties. Mater Lett 62:4446–4448CrossRefGoogle Scholar
  21. Chung CY, Chang YH, Chen GJ (2004) Effects of lanthanum doping on the dielectric properties of Ba(Fe0.5Nb0.5)O3 ceramic. J Appl Phys 96:6624–6628CrossRefGoogle Scholar
  22. Clauss FJ (1969) Engineer’s guide to high-temperature materials. Addison-Wesley, Reading, 401PGoogle Scholar
  23. Colletti LP, Flowers BH, Stickney JL (1998) Formation of thin films of CdTe, CdSe, and CdS by electrochemical atomic layer epitaxy. J Electrochem Soc 145:1442–1449CrossRefGoogle Scholar
  24. Cross LE (2004) Materials science: lead free at last. Nature 432:24–25CrossRefPubMedGoogle Scholar
  25. Daurree M (1857) Sur le Metamorphisme et Recherches Experimentales sur Quelques-uns. Ann Mines 12:289–326Google Scholar
  26. Dong WS, Li MY, Liu C, Lin F, Liu Z (2008) Novel ionic liquid assisted synthesis of SnO2 microspheres. J Colloid Interface Sci 319:115–122PubMedCrossRefGoogle Scholar
  27. Dorcet V, Trolliard G, Boullay P (2008) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: first order rhombohedral to orthorhombic phase transition. Chem Mater 20:5061–5073CrossRefGoogle Scholar
  28. Drexler KE (1986) Engines of creation: the coming era of nanotechnology. Anchor Books, DoubledayGoogle Scholar
  29. Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, ChichesterGoogle Scholar
  30. Dyer A (1988) An introduction to zeolite molecular sieves. Wiley, New YorkGoogle Scholar
  31. Eitssayeam S, Intatha U, Pengpat K, Tunkasiri T (2006) Preparation and characterization of barium iron niobate (BaFe0.5Nb0.5O3) ceramics. Curr Appl Phys 6:316–318CrossRefGoogle Scholar
  32. Faraday M (1857) The Bakerian Lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
  33. Fredrickx P, Schryvers D, Janssens K (2002) Nanoscale morphology of a piece of ruby red knuckel glass. Phys Chem Glasses 43:176–183Google Scholar
  34. Fuentes S, Zarate RA, Chavez E, Munoz P, Dıaz-Droguett D, Leyton P (2010) Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method. J Mater Sci 45:1448–1452CrossRefGoogle Scholar
  35. Fuyuno I (2005) Toyota’s production line leads from lab to road. Nature 435:1026–1027CrossRefGoogle Scholar
  36. Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel. Process Electrochem Solid State Lett 11:A60–A63CrossRefGoogle Scholar
  37. Hawkins DB, Roy R (1962) Electrolytic synthesis of kaolinite under hydrothermal conditions. J Am Ceram Soc 45:507–508CrossRefGoogle Scholar
  38. Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Optical response of high-dielectric-constant perovskite-related oxide. Science 293:673–676CrossRefPubMedGoogle Scholar
  39. Hosoi K, Korenaga T, Hashida T, Takahashi H, Yamasaki N (1998) New synthesis technique for making hydroxyapatite ceramics using hydrothermal hot-pressing. Rev High Press Sci Technol 7:1405–1407CrossRefGoogle Scholar
  40. Ijima S, Ichihashi T (1993) Single shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  41. Intatha U, Eitssayeam S, Pengpat K, MacKenzie KJ, Tunkasiri T (2007) Dielectric properties of low temperature sintered LiF doped BaFe0.5Nb0.5O3. Mater Lett 61:196–200CrossRefGoogle Scholar
  42. Intatha U, Eitssayeam S, Tunkasiri T (2009) Giant dielectric behavior of BaFe0.5Nb0.5O3 perovskite ceramic. Condens Matter Theor 23:429–435Google Scholar
  43. Ishikawa M, Kadota Y, Takiguchi N, Hosaka H, Moritay T (2008) Synthesis of nondoped potassium niobate ceramics by ultrasonic assisted hydrothermal method. Jpn J Appl Phys 47:7673–7677CrossRefGoogle Scholar
  44. Itoh T, Hori S, Abe M, Tamaura Y (1991) Light-enhanced ferrite plating of Fe3−xMxO4 (M = Ni, Zn, Co, and Mn) films in an aqueous solution. J Appl Phys 69:5911–5914CrossRefGoogle Scholar
  45. Jacobs H, Schmidt D (1982) High-pressure ammonolysis in solid-state chemistry. Curr Top Mater Sci 8:387–427Google Scholar
  46. Jha AK, Prasad K (2010) Understanding biosynthesis of metallic/oxide nanoparticles: a biochemical perspective. In: Ashok Kumar S, Thiagarajan S, Wang S-F (eds) Biocompatible nanomaterials synthesis, characterization and applications. NOVA Science, New YorksGoogle Scholar
  47. Juza R, Jacobs H (1966) Ammonothermal synthesis of magnesium and beryllium amides. Angew Chem Int Ed 5:247–247CrossRefGoogle Scholar
  48. Juza R, Jacobs H, Gerke H (1966) Ammonothermal synthese von Metallamiden und Metallnitriden. Ber Bunsen Phys Chem 70:1103–1105Google Scholar
  49. Kil HS, Jung YJ, Moon JI, Song JH, Lim DY, Cho SB (2015) Glycothermal synthesis and photocatalytic properties of highly crystallized anatase TiO2 nanoparticles. J Nanosci Nanotechnol 15:6193–6200PubMedCrossRefGoogle Scholar
  50. Kimura M, Ando A (1999) Piezoelectric Ceramic Composition U.S. Patent, Patent No. 6083415, Murata Manufacturing, JapanGoogle Scholar
  51. Köferstein R, Ebbinghaus SG (2017) Investigations of BaFe0.5Nb0.5O3 nano powders prepared by a low temperature aqueous synthesis and resulting ceramics. J Eur Ceram Soc 37:1509–1516CrossRefGoogle Scholar
  52. Komarneni S, Li QH, Stefanson KM, Roy R (1993) Microwave-hydrothermal processing for synthesis of electroceramic powders. J Mater Res 8:3176–3183CrossRefGoogle Scholar
  53. Kosova NV, Khabibullin AK, Boldyrev VV (1997) Hydrothermal reactions under mechanochemical treating. Solid State Ion 101:53–58CrossRefGoogle Scholar
  54. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley REC (1985) C60 Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  55. Kuno M (2012) Introductory nanoscience, physical and chemical concepts. Garland Science, Taylor and Francis, Boca RatonGoogle Scholar
  56. Lau ST, Cheng CH, Choy SH, Lin DM, Kwok KW, Chan HLW (2008) Lead-free ceramics for pyroelectric applications. J Appl Phys 103:104105–104104CrossRefGoogle Scholar
  57. Laudise RA, Nielsen JW (1961) Hydrothermal crystals growth. Solid State Phys 12:149–222CrossRefGoogle Scholar
  58. Laudise RA, Parker R (1970) The growth of single crystals. Prentice-Hall, Englewood CliffsGoogle Scholar
  59. Litvin BN, Tules DA (1973) Apparatus for hydrothermal synthesis and growth of monocrystals. In: Lobachev AN (ed) Crystallization processes under hydrothermal conditions. Studies in Soviet Science. Consultant Bureau, New York, p 139Google Scholar
  60. Lobachev AN (ed) (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New York, pp 1–255CrossRefGoogle Scholar
  61. Mahto UK, Roy SK, Chaudhuri S, Prasad K (2016) Effect of milling on the electrical properties of Ba(Fe1/2Ta1/2)O3 ceramic. Adv Mat Res 5:181–192CrossRefGoogle Scholar
  62. Mahto UK, Roy SK, Prasad K (2018) High energy milled Ba0.06Na0.47Bi0.47TiO3 ceramic: structural and electrical properties. IEEE Trans Dielectr Insul 25:174–180CrossRefGoogle Scholar
  63. Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman, New YorkGoogle Scholar
  64. Meng LM, Wang B, Ma MG, Lin KL (2016) The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem 1:63–83CrossRefGoogle Scholar
  65. Morey GW, Niggli P (1913) The hydrothermal formation of silicates, a review. J Am Chem Soc 35:1086–1130CrossRefGoogle Scholar
  66. Nagata H, Shinya T, Hiruma Y, Takenaka T, Sakaguchi I, Haneda H (2004) Developments in dielectric materials and electronic devices. Ceram Trans 167:213–221Google Scholar
  67. Newalkar BL, Komarneni S (2002) Simplified synthesis of micropore-free mesoporous silica, SBA-15, under microwave-hydrothermal conditions. Chem Commun 16:1774–1775CrossRefGoogle Scholar
  68. Peters D (1996) Ultrasound in materials chemistry. J Mater Chem 6:1605–1618CrossRefGoogle Scholar
  69. Prasad K, Kumari K, Lily, Chandra KP, Yadav KL, Sen S (2007) Electrical conduction in (Na1/2Bi1/2)TiO3 ceramic: impedance spectroscopy analysis. Adv Appl Ceram 106:241–246Google Scholar
  70. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chem Int 24:1026–1040CrossRefGoogle Scholar
  71. Raevski IP, Prosandeev SA, Bogatin AS, Malitskaya MA, Jastrabik L (2003) High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A= Ba, Sr, Ca; B= Nb, Ta, Sb). J Appl Phys 93:4130–4136CrossRefGoogle Scholar
  72. Rao DS, Muraleedharan K, Dey GK, Halder SK, Bhagavannarayan G, Banerji P, Bose DN (1999) Transmission electron microscopy and X-ray diffraction studies of quantum wells. Bull Mater Sci 22:947–951CrossRefGoogle Scholar
  73. Rao CNR, Müller A, Cheetham AK (eds) (2006) The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, New YorkGoogle Scholar
  74. Reaney IM, Petzelt J, Voitsekhovskii VV, Chu F, Setter N (1994) B-site order and infrared reflectivity in A (B′B′) O3 Complex perovskite ceramics. J Appl Phys 76:2086–2092CrossRefGoogle Scholar
  75. Richter TMM, Niewa R (2014) Chemistry of ammonothermal synthesis. Inorganics 2:29–78CrossRefGoogle Scholar
  76. Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solution synthesis of hydroxyapatite designer particulates. Solid State Ion 151:393–402CrossRefGoogle Scholar
  77. Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177CrossRefGoogle Scholar
  78. Rossetti R, Hull R, Gibson JM, Brus LE (1985) Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≅15 to 50 A size range: evolution from molecular to bulk semiconductor properties. J Chem Phys 82:552–559CrossRefGoogle Scholar
  79. Roy R (1994) Acceleration the kinetics of low-temperature inorganic syntheses. J Solid State Chem 111:11–17CrossRefGoogle Scholar
  80. Roy DM, Roy R (1955) Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O. Am Min 40:147–178Google Scholar
  81. Roy SK, Singh SN, Mukherjee SK, Prasad K (2017) Ba0.06(Na1/2Bi1/2)0.94TiO3–Ba(Fe1/2Ta1/2)O3: giant permittivity lead-free ceramics. J Mater Sci Mater Electron 28:4763–4771CrossRefGoogle Scholar
  82. Saha S, Sinha TP (2002) Structural and dielectric studies of BaFe0.5Nb0.5O3. J Phys Condens Matter 14:249–258CrossRefGoogle Scholar
  83. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87CrossRefPubMedGoogle Scholar
  84. Sakata K, Masuda Y (1974) Ferroelectric and antiferroelectric properties of (Na1/2 Bi1/2)TiO3–SrTiO3 solid-solution ceramics. Ferroelectrics 7:347–349CrossRefGoogle Scholar
  85. Schafhautl CE (1845) Gelehrte Anzeigen. Akad Wiss Miinchen 20:578Google Scholar
  86. Schmid G (2005) Nanoparticles. Wiley VCH, New YorkGoogle Scholar
  87. Schmidt S, Kubaski ET, Volanti DP, Sequinel T, Bezzon VD, Tabcherani SM (2018) Synthesis of acicular α-Bi2O3 microcrystals by microwave-assisted hydrothermal method. Particulate Sci Technol:1–5.
  88. Shrout TR, Zang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:111–124CrossRefGoogle Scholar
  89. Shuk P, Suchanek WL, Hao T, Gulliver E, Riman RE (2001) Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature. J Mater Res 16:1231–1234CrossRefGoogle Scholar
  90. Sonia CM, Kumar P (2017) Microwave assisted sol-gel synthesis of high dielectric constant CCTO and BFN ceramics for MLC applications. Proc Appl Ceram 11:154–159CrossRefGoogle Scholar
  91. Srivastava DN, Perkas N, Gedanken A, Felner I (2002) Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J Phys Chem B 106:1878–1883CrossRefGoogle Scholar
  92. Suchanek WL, Yoshimura M (1998) Preparation of strontium titanate thin films by the hydrothermal-electrochemical method in a solution flow system. J Am Ceram Soc 81:2864–2868CrossRefGoogle Scholar
  93. Sun S, Murray CB (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J Appl Phys 85:4325–4330CrossRefGoogle Scholar
  94. Tadjarodi A, Salehi M, Imani M, Ebrahimi S, Pardehkhorram R (2014) Glycine assisted synthesis of ZnFe2O4 nanoparticles by one pot microwave heating route and organic pollutant adsorption for water treatment, The 18th international electronic conference on synthetic organic chemistry, Multidisciplinary Digital Publishing InstituteGoogle Scholar
  95. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700CrossRefGoogle Scholar
  96. Tamir S, Zahavi J (1985) Laser-induced gold deposition on a silicon substrate. J Vac Sci Technol A 3:2312–2315CrossRefGoogle Scholar
  97. Trolliard G, Dorcet V (2008) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. part II: second order orthorhombic to tetragonal phase transition. Chem Mater 20:5074–5082CrossRefGoogle Scholar
  98. Turkevich J, Stevenson PL, Hillier J (1951) A study in the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  99. Ueno S, Nakashima K, Sakamoto Y, Wada S (2015) Synthesis of silver-strontium titanate hybrid nanoparticles by sol-gel-hydrothermal method. Nanomaterials 5:386–397PubMedPubMedCentralCrossRefGoogle Scholar
  100. Valencia Hurtado SH, Marín Sepúlveda JM, Restrepo Vásquez GM (2010) Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater Sci J 4:9–14Google Scholar
  101. Villegas I, Stickney JL (1992) Preliminary studies of GaAs deposition on Au (100), (110), and (111) surfaces by electrochemical atomic layer epitaxy. J Electrochem Soc 139:686–694CrossRefGoogle Scholar
  102. Wang AL (1998) Structural analysis of self-assembling nanocrystal superlattices. Adv Mater 10:13–30CrossRefGoogle Scholar
  103. Wang Z, Chen XM, Ni L, Liu XQ (2007a) Dielectric abnormities of complex perovskite Ba(Fe1/2Nb1/2)O3 ceramics over broad temperature and frequency range. Appl Phys Lett 90:022904–022903CrossRefGoogle Scholar
  104. Wang Z, Chen XM, Ni L, Liu YY, Liu XQ (2007b) Dielectric relaxations in Ba(Fe1/2Ta1/2)O3 giant dielectric constant ceramics. Appl Phys Lett 90:102905–102903CrossRefGoogle Scholar
  105. Wöhler F (1848) Recrystallization of apophyllite. Ann Chem Pharm 65:80–84CrossRefGoogle Scholar
  106. Wolny WW (2004) European approach to development of new environmentally sustainable electroceramics. Ceram Int 30:1079–1083CrossRefGoogle Scholar
  107. Xu XC, Bao YN, Song CS, Yang WS, Liu J, Lin LW (2004) Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous Mater 75:173–181CrossRefGoogle Scholar
  108. Yamakov V, Wolf D, Phillpot S, Mukherjee A, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular- dynamics simulation. Nat Mater 3:43–47PubMedCrossRefGoogle Scholar
  109. Yin JS, Wang ZL (1997) Ordered self-assembling of tetrahedral oxide nanocrystals. Phys Rev Lett 79:2570–2573CrossRefGoogle Scholar
  110. Yoshimura M, Suchanek W (1997) In situ fabrication of morphology-controlled advanced ceramic materials by soft solution processing. Solid State Ion 98:197–208CrossRefGoogle Scholar
  111. Yoshimura M, Suda H (1994) Hydrothermal processing of hydroxyapatite: past, present, and future. In: Brown PW, Constanz B (eds) Hydroxyapatite and related materials. CRC Press, Boca Raton, pp 45–72Google Scholar
  112. Yoshimura M, Suchanek WL, Watanabe T, Sakurai B (1999) In situ fabrication of SrTiO3-BaTiO3 layered thin films by hydrothermal-electrochemical technique. J Eur Ceram Soc 19:1353–1359CrossRefGoogle Scholar
  113. Zhu Z, Yang D, Liu H (2011) Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances. Adv Powder Technol 22:493–497CrossRefGoogle Scholar
  114. Zory PS Jr (ed) (1993) Quantum well lasers. Academic, San DiegoGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sumit K. Roy
    • 1
  • Kamal Prasad
    • 2
  1. 1.Department of PhysicsSt. Xavier’s CollegeRanchiIndia
  2. 2.Department of PhysicsTilka Manjhi Bhagalpur UniversityBhagalpurIndia

Personalised recommendations