Synthesis of Nanomaterials Involving Microemulsion and Miceller Medium

  • Santosh Kumar
  • Mohammad Y. Wani
  • Joonseok KohEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Today, nanotechnology has reached the point where it is used by chemists, physicists, biologists, materials scientists, and engineers, who have put in remarkable efforts to understand novel phenomena and develop outstanding technologies which find applications in almost all areas of life. Synthesis of nanomaterials by microemulsion and micellar medium has attained increasing significance both in basic research and in different industrial fields. The nanomaterials find applications from basic scientific research to the most advanced technologies in science and engineering. There are a plethora of methods to synthesize nanomaterials. Synthesis of nanomaterials using microemulsion and other micellar mediums are still considered to hold promise and continue to be the versatile preparation methods which facilitates to control the particle properties such as size, geometry, morphology, and surface area. We intend to focus on the synthesis of nanomaterials involving microemulsion and other micellar mediums for controlling the particle size and morphology of nanomaterials by summarizing the recent developments carried out in the synthesis of organic and inorganic nanoparticles by this method.


Microemulsion, Micelles, Metal sulphide, Metal-oxide, Nanotechnology 


  1. Ahmad TD, Wang ZL, Hengiein A, Sayed MA (1996) Cubic colloidal platinum nanoparticles. Chem Mater 8:1161–1163CrossRefGoogle Scholar
  2. Anderson MT, Martin JE, Odinek J, Newcomer P (2006) Synthesis of surfactant-templated mesoporous materials from homogeneous solutions. In book: Access in Nanoporous Matererials p 29–37Google Scholar
  3. Atik SS, Thomas JK (1981) Polymerized microemulsions. J Am Chem Soc 103:4279–4280CrossRefGoogle Scholar
  4. Aubery C, Solans C, Prevost S, Gradzielski M, Sanchez-Dominguez M (2013) Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Langmuir 29:1779–1789CrossRefGoogle Scholar
  5. Barnickel P, Wokaum A (1990) Synthesis of metal colloids in inverse microemulsions. Mol Phys 69:1–9CrossRefGoogle Scholar
  6. Boutonnet M, Sanchez-Dominguez M (2017) Microemulsion droplets to catalytically active nanoparticles. How the application of colloidal tools in catalysis aims to well-designed and efficient catalysts. Catal Today 285:89–103CrossRefGoogle Scholar
  7. Boutonnet M, Kizling J, Stenius P, Maire G (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloid Surf 5:209–225CrossRefGoogle Scholar
  8. Chen DH, Chen CJ (2002) Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562CrossRefGoogle Scholar
  9. Chen J, Wang X, Zhang Z (2008) In situ fabrication of mesoporous CdS nanoparticles in microemulsion by gamma ray irradiation. Mater Lett 62:787–790CrossRefGoogle Scholar
  10. Cushing BL, Kolesnichenko VL, Connor CJO (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  11. Destree J, Nagy B (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv Colloid Interf Sci 123:353–367CrossRefGoogle Scholar
  12. Destree C, Debuigne F, George S, Champagne B, Guillaume M, Ghijsen J, Nagy JB (2008) J complexes of retinol formed within the nanoparticles prepared from microemulsions. Colloid Polym Sci 286:1463–1470CrossRefGoogle Scholar
  13. Ekwall P, Mandell L, Solyom P (1970) The solution phase with reversed micelles in the cetyltrimethylammonium bromide-hexanol-water-system. J Colloid Interf Sci 35:266–272CrossRefGoogle Scholar
  14. Han MY, Huang W, Chew CH, Gan LM, Zhang XJ, Ji W (1998) Large nonlinear absorption in coated Ag2S/CdS nanoparticles by inverse microemulsion. J Phys Chem B 102:1884–1887CrossRefGoogle Scholar
  15. Hu A, Yao Z, Yu X (2009) Phase behavior of a sodium dodecanol allyl sulfosuccinicdiester/n-pentanol/methyl acrylate/butyl acrylate/water microemulsion system and preparation of acrylate latexes by microemulsion polymerization. J Appl Polym Sci 113:2202–2208CrossRefGoogle Scholar
  16. Hu Z, Nourafkan E, Gao H, Wen D (2017) Microemulsions stabilized by in-situ synthesized nanoparticles for enhanced oil recovery. Fuel 210:272–281CrossRefGoogle Scholar
  17. Inouye K, Endo R, Otsuka Y, Miyashiro K, Kaneko K, Ishikawa T (1982) Oxygenation of ferrous ions in reversed micelle and reversed microemulsion. J Phys Chem 86:1465–1469CrossRefGoogle Scholar
  18. Ishak KA, Annuar MSM (2017) Temperature-induced three-phase equilibrium of medium-chain-length poly-3-hydroxyalkanoates-incorporated emulsion system for production of polymeric nanoparticle. J Disper Sci Technol 39(3):375–383. CrossRefGoogle Scholar
  19. Kresge CT, Leonowicz ME, Roth WJ, Virtula JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  20. Kurihara K, Kizling J, Stenius P, Fendler JH (1983) Laser and pulse radiolytically induced colloidal gold formation in water-in-oil microemulsions. J Am Chem Soc 105:2574–2579CrossRefGoogle Scholar
  21. La Mer VK, Dinegam RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRefGoogle Scholar
  22. Lavaud C, Kajdan M, Compte E, Maurel J, Him JLK, Bron P, Oliviero E, Long J, Larionova J, Guari Y (2017) In situ synthesis of Prussian blue nanoparticles within a biocompatible reverse micellar system for in vivo Cs+ uptake. New J Chem 41:2887–2890CrossRefGoogle Scholar
  23. Lim KT, Hwang HS, Lee MS, Lee GD, Hong SS, Johnston KP (2002) Formation of TiO2 nanoparticles in water-in-CO2 microemulsions. J Chem Soc Chem Commun 14:1528–1529Google Scholar
  24. Lopez-Quintela MA, Tojo C, Blanco MC, Garcia Rio L, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interf Sci 9:264–278CrossRefGoogle Scholar
  25. Luisi PL, Majid LJ, Fendler JH (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution. Crit Rev Biochem 20:409–474CrossRefGoogle Scholar
  26. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 5:397–417CrossRefGoogle Scholar
  27. Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: formation and applications. Curr Opin Colloid Interface Sci 17:290–296CrossRefGoogle Scholar
  28. Mohameda A, Ardyani T, Bakar SA, Sagisaka M, Ono S, Narumi T, Kubota M, Brown P, Eastoe J (2016) Effect of surfactant headgroup on low-fluorine-content CO2-philichybrid surfactants. J Supercrit Fluids 116:148–154CrossRefGoogle Scholar
  29. Monnoyer P, Fonseca A, Nagy JB (1995) Preparation of colloidal AgBr particles from microemulsions. Colloid Surf A Physicochem Eng Asp 100:233–243CrossRefGoogle Scholar
  30. Nagy JB, Mittal KL (1999) Handbook of microemulsion science and technology. Marcel Dekker, New York, p 499Google Scholar
  31. Okoli C, Sanchez-Dominguez M, Boutonnet M, Järås S, Civera C, Solans C, Kuttuva GR (2012) Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 28:8479–8485CrossRefGoogle Scholar
  32. Pal J, Wu D, Hakkarainen M, Srivastava RK (2017) The viscoelastic interaction between dispersed and continuous phase of PCL/HA-PVA oil-in-water emulsion uncovers the theoretical and experimental basis for fiber formation during emulsion electrospinning. Eur Polym J 96:44–54CrossRefGoogle Scholar
  33. Pemartin K, Solans C, Alvarez-Quintana J, Sanchez-Dominguez M (2014) Synthesis of Mn-Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method. Colloids Surf A Physicochem Eng Aspects 451:161–171CrossRefGoogle Scholar
  34. Pileni MP (ed) (1989) Structure and reactivity in reverse micelles. Elsevier, AmsterdamGoogle Scholar
  35. Pileni MP (2003) Nanocrystals: fabrication, organization and collective properties. C R Chimie 6:965–978CrossRefGoogle Scholar
  36. Pileni MP (2008) Supracrystals of inorganic nanocrystals: an open challenge for new physical properties. Acc Chem Res 41:1799–1809CrossRefGoogle Scholar
  37. Qi LM, Ma J, Chen H, Zhao Z (1997) Reverse micelle based formation of BaCO3 nanowires. J Phys Chem B 101:3460–3463CrossRefGoogle Scholar
  38. Richard B, Lemyre JL, Ritcey AM (2017) Nanoparticle size control in microemulsion synthesis. Langmuir 33:4748–4757CrossRefGoogle Scholar
  39. Rivera-Rangel RD, González-Muñoz MP, Avila-Rodriguez M, Razo-Lazcano TA, Solans C (2017) Green synthesis of silver nanoparticles in oil-in-water microemulsion and nanoemulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf A 536:60–67. CrossRefGoogle Scholar
  40. Sanchez-Dominguez M, Liotta LF, Carlo GD, Pantaleo G, Venezia AM, Solans C, Boutonnet M (2010) Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catal Today 158:35–43CrossRefGoogle Scholar
  41. Sanchez-Dominguez M, Pemartin K, Boutonnet M (2012) Preparation of inorganic nanoparticles in oil-in-water microemulsions: a soft and versatile approach. Curr Opin Colloid Interface Sci 17:297–305CrossRefGoogle Scholar
  42. Sanchez-Dominguez M, Morales-Mendoza G, Rodriguez-Vargas MJ, Ibarra-Malo CC, Rodriguez-Rodriguez AA, Vela-Gonzalez AV, Perez-Garcia SA, Gomez R (2015) Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) microemulsion method and their use for the photocatalytic degradation of phenol. J Environ Chem Eng 3:3037–3047CrossRefGoogle Scholar
  43. Schulman JH, Stoekenius W, Prince LM (1959) Mechanism of formation and structure of microemulsions by electron microscopy. J Phys Chem 63:1677–1680CrossRefGoogle Scholar
  44. Schulreich C, Angermann C, Höhn S, Neubauer R, Seibt S, Stehle R, Lapp A, Richardt A, Diekmann A, Hellwega T (2013) Bicontinuous microemulsions with extremely high temperature stability based on skin friendly oil and sugar surfactant. Colloids Surf A Physicochem Eng Aspects 418:39–46CrossRefGoogle Scholar
  45. Sharma S, Ganguli AK (2014) Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures. J Phys Chem B 118:4122–4131CrossRefGoogle Scholar
  46. Shervani Z, Ikushima Y, Hakuta Y, Kunieda H, Aramaki K (2006) Effect of cosurfactants on water solubilization in supercritical carbon dioxide microemulsions. Colloid Surf A Physicochem Eng Aspects 289:229–232CrossRefGoogle Scholar
  47. Solanki JN, Murthy ZVP (2011) Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res 50(22):12311–12323CrossRefGoogle Scholar
  48. Song Y, Garcia RM, Dorin RM, Wang H, Qiu Y, Coker EN, Steen WA, Miller JE, Shelnutt JA (2007) Synthesis of platinum nanowire networks using a soft template. Nano Lett 7(12):3650–3655CrossRefGoogle Scholar
  49. Steudle AK, Nestl BM, Hauer B, Stubenrauch C (2015) Activity of squalene-hopenecyclases in bicontinuous microemulsions. Colloids Surf B Biointerf 135:735–741CrossRefGoogle Scholar
  50. Vaucher S, Fielden J, Li M, Dujardin E, Mann S (2002) Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosyl ferrate and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett 2:225–229CrossRefGoogle Scholar
  51. Wang LN, Zhang Y, Muhammed M (1995) Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions. J Mater Chem 5:309–314CrossRefGoogle Scholar
  52. Wang Y, Rong H, Li B, Xing L, Li X, Li W (2014) Microemulsion-assisted synthesis of ultrafine Li4Ti5O12/C nanocomposite with oleic acid as carbon precursor and particle size controller. J Power Sources 246:213–218CrossRefGoogle Scholar
  53. Yan C, Sagisaka M, James C, Rogers SE, Peach J, Hatzopoulos MH, Eastoe J (2015) Action of hydrotropes in water-in-CO2microemulsions. Colloids Surf A Physicochem Eng Aspects 476:76–82CrossRefGoogle Scholar
  54. Zhong O, Hiroshi Y, Keisaku K (2007) Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation. J Photochem Photobiol A Chem 189:7–14CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Santosh Kumar
    • 1
  • Mohammad Y. Wani
    • 2
  • Joonseok Koh
    • 1
    Email author
  1. 1.Department of Organic and Nano System EngineeringKonkuk UniversitySeoulRepublic of Korea
  2. 2.Faculty of Science, Chemistry DepartmentUniversity of JeddahJeddahKingdom of Saudi Arabia

Personalised recommendations