Advertisement

Mechanistic Plethora of Biogenetic Nanosynthesis: An Evaluation

  • Anal K. Jha
  • Kamal Prasad
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nature is more often intrigue yet enrapturing and its cohorts right from microbes, crustaceans, animals to giant tree ferns and cycads are mere mega-assemblies of molecules interacting with each other, screening themselves from the wrath and rigors of the exponentially changing environment thereby displaying themselves as living conglomerate of molecules obeying the precept of thermodynamics. Molecules as and when challenged, dissociated, or hived from their natural milieu liberate energy and that helps to negotiate a chore of nanotransformation. Biological systems were engineered to take up various naturally posed challenges and were given metabolites to circumvent such threats. These molecules are used by the surviving humanity for different purposes of their beneficiation. Broadly categorized as primary and secondary metabolites depending upon their functional chores, they seemingly have proved their prodigality towards nanomaterials synthesis. This fact holds water for all natural cohorts and broadly relies upon the incubation of broth, its seasoning and other pivotal experimental protocols.

Keywords

Nanocrystalline Prokaryotes Eukaryotes Reactive oxygen species (ROS) Catalases Superoxide dismutases (SODs) Thioredoxin Peroxiredoxins Glutathione Ascorbic acid 

References

  1. Ahmadu S, Mohammed AA, Buhari H, Auwal A (2016) An overview of vitamin C as an antistress in poultry. Malays J Vet Res 7:9–22Google Scholar
  2. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–229CrossRefGoogle Scholar
  4. Anfinsen CB, Scheraga HA (1975) Experimental and theoretical aspects of protein folding. Adv Protein Chem 29:205–300PubMedCrossRefGoogle Scholar
  5. Armendariz V, Herrera I, Peralta-Videa J, Jose-Yacaman M, Troiani H, Santiago P (2004) Size controlled gold nanoparticles formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382CrossRefGoogle Scholar
  6. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, Haden ML, Chapman MD (1995) Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2 sequence homology to the aspartic proteases. J Biol Chem 270:19563–19568PubMedCrossRefGoogle Scholar
  7. Asturias JA, Gómez-Bayón N, Arilla MC, Martínez A, Palacios R, Sánchez-Gascón F, Martínez J (1999) Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 162:4342–4348PubMedGoogle Scholar
  8. Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142PubMedCrossRefGoogle Scholar
  9. Awwad AM, Salem NM, Abdeen AO (2013) Biosynthesis of silver nanoparticles using loquat leaf extract and its antibacterial activity. Adv Mater Lett 4:338–342CrossRefGoogle Scholar
  10. Ayandiran TA, Fawole OO, Adewoye SO, Ogundiran MA (2009) Bioconcentration of metals in the body muscle and gut of Clarias gariepinus exposed to sub-lethal concentrations of soap and detergent effluent. J Cell Anim Biol 3:113–118Google Scholar
  11. Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (2009) Mycorrhizas-functional processes and ecological impacts. Springer, BerlinCrossRefGoogle Scholar
  12. Bailey K (1946) Tropomyosin: a new asymmetric protein component of muscle. Nature 157:368–369PubMedCrossRefGoogle Scholar
  13. Bailey K (1948) Tropomyosin: a new asymmetric protein component of the muscle fibril. Biochem J 43:271–279PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ballan-Dufrançais C (2002) Localization of metals in cells of pterygote insects. Microsc Res Tech 56:403–420PubMedCrossRefGoogle Scholar
  15. Bates RG, Canham RG (1951) pH of solutions of potassium hydrogen d-tartrate from 0° to 60°C. J Res Natl Bur Stand 47:343–438CrossRefGoogle Scholar
  16. Bun-Ya M, Harashima S, Oshima Y (1992) Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol 12:2958–2966PubMedPubMedCentralCrossRefGoogle Scholar
  17. Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364PubMedPubMedCentralGoogle Scholar
  18. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583PubMedCrossRefGoogle Scholar
  19. Choi JH, Lou W, Vancura A (1998) A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273:29915–29922PubMedCrossRefGoogle Scholar
  20. Clarke A, Pörtner HO (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev 85:703–727PubMedGoogle Scholar
  21. Clausen CA, Green F (2003) Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. Int Biodeter Biodegr 51:139–144CrossRefGoogle Scholar
  22. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cooper A (1999) In: Geoffrey A (ed) Protein: a comprehensive treatise, vol 2. JAI Press, Stamford, pp 217–270Google Scholar
  25. Dameron CT, Winge DR (1990) Peptide mediated formation of quantum semiconductors. Trends Biotechnol 8:3–6PubMedCrossRefGoogle Scholar
  26. Damjanovic D, Klein N, Li J, Porokhonskyy V (2010) What can be expected from lead-free piezoelectric materials? Funct Mater Lett 3:5–13CrossRefGoogle Scholar
  27. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18PubMedPubMedCentralCrossRefGoogle Scholar
  28. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8. https://doi.org/10.1186/1477315538 CrossRefGoogle Scholar
  29. Edsall JT (1995) Hsien Wu and the first theory of protein denaturation. Adv Protein Chem 46:1–5CrossRefGoogle Scholar
  30. Egli D, Domenech J, Selvaraj A, Balamurugan K, Hua H, Capdevila M, Georgiev O, Schaffner W, Atrian S (2006) The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification. Genes Cells 11:647–658PubMedCrossRefGoogle Scholar
  31. Gadda G, Fitzpatrick PF (1998) Biochemical and physical characterization of the active FAD containing form of nitroalkane oxidase from Fusarium oxysporum. Biochemistry 37:6154–6164PubMedCrossRefGoogle Scholar
  32. Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410PubMedPubMedCentralGoogle Scholar
  33. Gan Z (1991) Yeast thioredoxin genes. J Biol Chem 266:1692–1696PubMedGoogle Scholar
  34. Gasson MJ, Shearman CA (2003) In: BJB W, Warner PJ (eds) Genetics of lactic acid bacteria, vol 3. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  35. Ghule K, Ghule AV, Liu JY, Ling YC (2006) Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicerarietinum L.) extract and HAuCl4 × 3H2O: a green biogenic approach. J Nanosci Nanotechnol 6:3746–3751PubMedCrossRefGoogle Scholar
  36. Grant CM, Collinson LP, Roe JH, Dawes IW (1996a) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171–179PubMedCrossRefGoogle Scholar
  37. Grant CM, MacIver FH, Dawes IW (1996b) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515PubMedCrossRefGoogle Scholar
  38. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676PubMedCrossRefGoogle Scholar
  39. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35PubMedCrossRefGoogle Scholar
  41. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177PubMedCrossRefGoogle Scholar
  43. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisae. FEMS Microbiol Rev 27:35–64PubMedCrossRefPubMedCentralGoogle Scholar
  44. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271CrossRefGoogle Scholar
  45. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966PubMedGoogle Scholar
  46. Holwill MEJ, Silvester NR (1967) Thermodynamic aspects of flagellar activity. J Exp Biol 47:249–265PubMedGoogle Scholar
  47. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115CrossRefGoogle Scholar
  48. Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365CrossRefGoogle Scholar
  49. Inoue Y, Matsuda T, Sugiyama KI, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009PubMedCrossRefGoogle Scholar
  50. Jadhav SH, Sarkar SN, Patil RD, Tripathi HC (2007) Effects of sub-chronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Contam Toxicol 53:667–677PubMedCrossRefGoogle Scholar
  51. Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood- rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547PubMedCrossRefGoogle Scholar
  52. Jha AK, Prasad K (2010a) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342:68–72PubMedCrossRefGoogle Scholar
  53. Jha AK, Prasad K (2010b) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B Biointerfaces 75:330–334PubMedCrossRefGoogle Scholar
  54. Jha AK, Prasad K (2010c) Synthesis of BaTiO3 nanoparticles: a new sustainable green approach. Integr Ferroelectr 117:49–54CrossRefGoogle Scholar
  55. Jha AK, Prasad K (2010d) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1:P110–P117CrossRefGoogle Scholar
  56. Jha AK, Prasad K (2011) Biosynthesis of gold nanoparticles using bael (Aegle marmelos) leaf: mythology met technology. Int J Green Nanotechnol Phys Chem 3:92–97CrossRefGoogle Scholar
  57. Jha AK, Prasad K (2012) Banana fly (Drosophila sp.) synthesizes CdS nanoparticles! J Bionanosci 6:99–103CrossRefGoogle Scholar
  58. Jha AK, Prasad K (2013a) Can animals too negotiate nano transformations? Adv Nano Res 1:35–42CrossRefGoogle Scholar
  59. Jha AK, Prasad K (2013b) Rose (Rosa sp.) petals assisted green synthesis of gold nanoparticles. J Bionanosci 7:245–250CrossRefGoogle Scholar
  60. Jha AK, Prasad K (2014a) Green synthesis and characterization of BaFe0.5Nb0.5O3 nanoparticles. J Chin Adv Mater Soc 2:294–302CrossRefGoogle Scholar
  61. Jha AK, Prasad K (2014b) Green synthesis of silver nanoparticles and its activity on SiHa cervical cancer cell line. Adv Mater Lett 5:501–505CrossRefGoogle Scholar
  62. Jha AK, Prasad K (2014c) Synthesis of silver nanoparticles employing fish processing discard: an eco-amenable approach. J Chin Adv Mater Soc 2:179–185CrossRefGoogle Scholar
  63. Jha AK, Prasad K (2015) Facile green synthesis of metal and oxide nanoparticles using papaya juice. J Bionanosci 9:311–314CrossRefGoogle Scholar
  64. Jha AK, Prasad K (2016a) Green synthesis and antimicrobial activity of silver nanoparticles onto cotton fabrics: an amenable option for textile industries. Adv Mater Lett 7:42–46CrossRefGoogle Scholar
  65. Jha AK, Prasad K (2016b) Aquatic fern (Azolla sp.) assisted synthesis of gold nanoparticles. Int J Nanosci 15:1650008–1650012CrossRefGoogle Scholar
  66. Jha AK, Prasad K (2016c) Synthesis of ZnO nanoparticles from goat slaughter waste for environmental protection. Int J Curr Eng Technol 6:147–151Google Scholar
  67. Jha AK, Prasad K (2018) Nanomaterials from biological and pharmaceutical wastes – a step towards environmental protection. Mater Today: Proc, in pressGoogle Scholar
  68. Jha AK, Prasad K, Kulkarni AR (2007) Microbe mediated nano transformation: cadmium. Nano 2:239–242CrossRefGoogle Scholar
  69. Jha AK, Prasad K, Kulkarni AR (2008) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotechnol 4:17–21Google Scholar
  70. Jha AK, Prasad K, Prasad K (2009a) Biosynthesis of Sb2O3 nanoparticles: a low cost green approach. Biotechnol J 4:1582–1585PubMedCrossRefGoogle Scholar
  71. Jha AK, Prasad K, Kulkarni AR (2009b) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B Biointerfaces 71:226–229PubMedCrossRefGoogle Scholar
  72. Jha AK, Prasad K, Kumar V, Prasad K (2009c) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 25:1476–1479PubMedCrossRefGoogle Scholar
  73. Jha AK, Kumar V, Prasad K (2011) Biosynthesis of metal and oxide nanoparticles using orange juice. J Bionanosci 5:162–166CrossRefGoogle Scholar
  74. Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515PubMedCrossRefGoogle Scholar
  75. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin assisted synthesis of silver and gold nanaoparicles;a novel biological approach. J Nanopart Res 11:1075–1085CrossRefGoogle Scholar
  76. Kleerebezem M (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405–1414PubMedCrossRefGoogle Scholar
  77. Kochergina LA, Volkov AV, Krutov DV, Krutova ON (2006) The standard enthalpies of formation of citric and tartaric acids and their dissociation products in aqueous solutions. Russ J Phys Chem A 80:1029–1033CrossRefGoogle Scholar
  78. Kondo N, Isobe M, Imai K, Goto T, Murasugi A, Hayashi Y (1983) Structure of cadystin, the unitpeptide of cadmium-binding peptides induced in a fission yeast, Schizosaccharomyces pombe. Tetrahedron Lett 24:925–928CrossRefGoogle Scholar
  79. van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223–1230PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kumar S, Sahay LK, Jha AK, Prasad K (2013) Synthesis and characterization of nanocrystalline Al0.5Ag0.5TiO3 powder. Adv Nano Res 1:211–218CrossRefGoogle Scholar
  82. Kumar S, Jha AK, Prasad K (2015) Green synthesis and characterization of (Ag1/2Al1/2)TiO3 nanoceramics. Mater Sci-Pol 33:59–72CrossRefGoogle Scholar
  83. Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE, Kaya A, Hacioglu E, Kwak GH, Koc A, Kim HY, Gladyshev VN (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284:4354–4364PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lewinska A, Bartosz G (2007) Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic Res 41:580–590PubMedCrossRefGoogle Scholar
  85. Li S, Qui L, Shen Y, Xie A, Yu X, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858CrossRefGoogle Scholar
  86. Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147PubMedCrossRefGoogle Scholar
  87. Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of cu(I) into phytochelatins. Biochem J 307:697–705PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40PubMedCrossRefGoogle Scholar
  89. Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci U S A 85:8815–8819PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mehra RK, Mulchandani P, Hunter TC (1994) Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochem Biophys Res Commun 200:1193–1200PubMedCrossRefGoogle Scholar
  91. Mizuno T, Mizushima S (1990) Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Mol Microbiol 4:1077–1082PubMedCrossRefGoogle Scholar
  92. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195PubMedPubMedCentralCrossRefGoogle Scholar
  93. Morel-Deville F, Fauvel F, Morel P (1998) Two-component signal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei. Microbiology 144:2873–2883PubMedCrossRefGoogle Scholar
  94. Morrison RT, Boyd RN (1983) Advanced organic chemistry. Allyn and Bacon, BostonGoogle Scholar
  95. Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast. J Biochem 93:661–664PubMedCrossRefGoogle Scholar
  96. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590CrossRefGoogle Scholar
  97. Paraszkiewicz K, Długónski J (2009) Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int Biodeter Biodegr 63:100–105CrossRefGoogle Scholar
  98. Paraszkiewicz K, Frycie A, Słaba M, Długónski J (2007) Enhancement of emulsifier production by Curvularia lunata in cadmium,zinc and lead presence. Biometals 20:797–805PubMedCrossRefGoogle Scholar
  99. Paraszkiewicz K, Bernat P, Naliwajski M, Długónski J (2010) Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Arch Microbiol 192:135–141PubMedCrossRefGoogle Scholar
  100. Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, Spyrou G (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366–6373PubMedCrossRefGoogle Scholar
  101. Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental and nutritive stresses. Enzym Microb Technol 26:737–742CrossRefGoogle Scholar
  102. Perego P, Howell SB (1997) Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol 147:312–318PubMedCrossRefGoogle Scholar
  103. Perry SV (2001) Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22:5–49PubMedCrossRefGoogle Scholar
  104. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles Article ID 963961. https://doi.org/10.1155/2014/963961 CrossRefGoogle Scholar
  105. Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1:129–135Google Scholar
  106. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250PubMedCentralCrossRefGoogle Scholar
  107. Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation. Indian J Phys 84:1355–1360CrossRefGoogle Scholar
  108. Prasad K, Priyanka ANK, Chandra KP, Kulkarni AR (2014) Dielectric relaxation in Ba(Y1/2Nb1/2)O3-BaTiO3 ceramics. J Mater Sci Mater Electron 25:4856–4866CrossRefGoogle Scholar
  109. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefPubMedGoogle Scholar
  110. Rao KJ, Paria S (2013) Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater Res Bull 48:628–634CrossRefGoogle Scholar
  111. Rao ML, Savithramma N (2011) Biological synthesis of silver nanoparticles using Svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J Pharm Sci Res 3:1117–1121Google Scholar
  112. Rauser WE (1995) Phytochelatins and related peptides structure, biosynthesis, and function. Plant Physiol 109:1141–1149PubMedPubMedCentralCrossRefGoogle Scholar
  113. Raut WR, Lakkakula JR, Kolekar NS, Mendhulkar VD, Kashid SB (2009) Phytosynthesis of silver nanoparticles using Gliricidia sepium (Jacq.). Curr Nanosci 5:117–121CrossRefGoogle Scholar
  114. Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhhizal mushroom Tricholoma crassum (BERK.) SACC: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Biostruct 6:1289–1299Google Scholar
  115. Robinson VL, Buckler DR, Stock AM (2000) A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol 7:626–633PubMedCrossRefGoogle Scholar
  116. Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177CrossRefGoogle Scholar
  117. Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302PubMedGoogle Scholar
  118. Sathishkumar M, Krishnamurthy S, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101:7958–7965PubMedCrossRefGoogle Scholar
  119. Selvaraj A, Balamurugan K, Yepiskoposyan H, Zhou H, Egli D, Georgiev O, Thiele DJ, Schaffner W (2005) Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 19:891–896PubMedPubMedCentralCrossRefGoogle Scholar
  120. Serrano LM (2008) Oxidative stress response in Lactobacillus plantarum WCFS1: a functional genomics approach. Ph.D. Thesis, Wageningen University and Research Centre, The NetherlandsGoogle Scholar
  121. Shanti SS, Karl JD (2006) The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726CrossRefGoogle Scholar
  122. Shareck J, Choi Y, Lee B, Miguez CB (2004) Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit Rev Biotechnol 24:155–208PubMedCrossRefGoogle Scholar
  123. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  124. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their activity. Dig J Nanomater Biostruct 5:483–489Google Scholar
  125. Stuart GW, Searle PF, Chen HY, Brinster RL, Palmiter RD (1984) A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A 81:7318–7322PubMedPubMedCentralCrossRefGoogle Scholar
  126. Suganya T, Senthilkumar S, Deepa K, Muralidharan J, Sasikumar P, Muthusamy N (2016) Metal toxicosis in poultry – a review. Int J Sci Environ Technol 5:515–524Google Scholar
  127. Sundquist AR, Fahey RC (1989) Evolution of antioxidant mechanisms: thiol-dependent peroxidases and thioltransferase among procaryotes. J Mol Evol 29:429–435PubMedCrossRefGoogle Scholar
  128. Tamás MJ, Martinoia E (2005) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, HeidelbergGoogle Scholar
  129. Tortosa P, Dubnau D (1999) Competence for transformation: a matter of taste. Curr Opin Microbiol 2:588–592PubMedCrossRefGoogle Scholar
  130. Tripathi AK, Harsh NSK, Gupta N (2007) Fungal treatment of industrial effluents: a mini review. Life Sci J 4:78–81Google Scholar
  131. Ulla AJ, Patrick AWV, Ulla SL, Roger DF (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567CrossRefGoogle Scholar
  132. Urban PL, Kuthan RT (2004) Application of probiotics in the xenobiotic detoxification therapy. Nukleonika 49(suppl 1):S43–S45Google Scholar
  133. Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96:7110–7115PubMedPubMedCentralCrossRefGoogle Scholar
  134. Vina J (ed) (1990) Glutathione: metabolism and physiological functions. CRC Press, Boca RatonGoogle Scholar
  135. Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349PubMedCrossRefGoogle Scholar
  136. Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951PubMedCrossRefGoogle Scholar
  137. Yadav N, Khandelwal S (2006) Effect of Picroliv on cadmium-induced hepatic and renal damage in the rat. Hum Exp Toxicol 25:581–591PubMedCrossRefGoogle Scholar
  138. Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, Georgiev O, Schaffner W (2006) Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res 34:4866–4877PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anal K. Jha
    • 1
  • Kamal Prasad
    • 2
  1. 1.Aryabhatta Centre for Nanoscience and NanotechnologyAryabhatta Knowledge UniversityPatnaIndia
  2. 2.Department of PhysicsTilka Manjhi Bhagalpur UniversityBhagalpurIndia

Personalised recommendations