Advertisement

Plant-Derived Drugs Affecting Ion Channels

  • Angelika BöttgerEmail author
  • Ute Vothknecht
  • Cordelia Bolle
  • Alexander Wolf
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Compared to GPCRs, the set of plant-derived compounds that target ion channels appears much more limited. For voltage-gated channels, most known toxins are derived from animals such as snails, spiders and snakes. Also, many ligand-gated channels are targeted by few to none known plant-derived drugs. Nevertheless, ion channels are the target of some of the most potent plant poisons and most commonly used plant-derived drugs.

References

  1. Baldwin IT (1988) The alkaloidal responses of wild tobacco to real and simulated herbivory. Oecologia 77(3):378–381.  https://doi.org/10.1007/bf00378046CrossRefPubMedGoogle Scholar
  2. Bates SS, Douglas DJ, Doucette GJ, Léger C (1995) Enhancement of domoic acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-nitzschia multiseries. Nat Toxins 3(6):428–435.  https://doi.org/10.1002/nt.2620030605CrossRefPubMedGoogle Scholar
  3. Battersby AR, Hodson HF (1965) Chapter 15 alkaloids of calabash curare and Strychnos species**the majority of Strychnos alkaloids which are based upon the strychnine skeleton are covered in chapter 17. In: RHF M (ed) The alkaloids: chemistry and physiology, vol 8. Academic press, pp 515–579.  https://doi.org/10.1016/S1876-0813(08)60054-8CrossRefGoogle Scholar
  4. Bock JH, Norris DO (2016) Chapter 1 - introduction to forensic plant science. In: Forensic plant science. Academic Press, San Diego, pp 1–22.  https://doi.org/10.1016/B978-0-12-801475-2.00001-4CrossRefGoogle Scholar
  5. Boehm R (1897) Ueber Curare und Curarealkaloide. Arch Pharm 235(8–9):660–684.  https://doi.org/10.1002/ardp.18972350812CrossRefGoogle Scholar
  6. Bonpland A, Humboldt A, William HM (1814) Personal narrative of travels to the equinoctial regions of America during the years 1799-1804. Longman, Hurst, Rees, Orme, and Brown, LondonGoogle Scholar
  7. Brown TK (2013) Ibogaine in the treatment of substance dependence. Curr Drug Abuse Rev 6(1):3–16CrossRefGoogle Scholar
  8. Cembella AD (1998) Ecophysiology and metabolism of paralytic shellfish toxins in marine microalgae. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful blooms. Springer, Berlin, Heidelberg, pp 381–403Google Scholar
  9. Chan TY (2009) Aconite poisoning. Clin Toxicol (Phila) 47(4):279–285.  https://doi.org/10.1080/15563650902904407CrossRefGoogle Scholar
  10. Czarnowski C, Bailey J, Bal S (2007) Curare and a Canadian connection. Can Fam Physician 53(9):1531–1532PubMedCentralGoogle Scholar
  11. Dayan AD (2009) What killed Socrates? Toxicological considerations and questions. Postgrad Med J 85(999):34–37.  https://doi.org/10.1136/pgmj.2008.074922CrossRefPubMedGoogle Scholar
  12. Edwards C, Beattie KA, Scrimgeour CM, Codd GA (1992) Identification of anatoxin-A in benthic cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. Toxicon 30(10):1165–1175.  https://doi.org/10.1016/0041-0101(92)90432-5CrossRefPubMedGoogle Scholar
  13. Eiden F (2003) Strychnine, ein ganz besonderes Gift. Kultur & Technik 27:24–30Google Scholar
  14. Franzios G, Mirotsou M, Hatziapostolou E, Kral J, Scouras ZG, Mavragani-Tsipidou P (1997) Insecticidal and genotoxic activities of mint essential oils. J Agric Food Chem 45(7):2690–2694.  https://doi.org/10.1021/jf960685fCrossRefGoogle Scholar
  15. Fuentealba J, Guzmán L, Manríquez-Navarro P, Pérez C, Silva M, Becerra J, Aguayo LG (2007) Inhibitory effects of tutin on glycine receptors in spinal neurons. Eur J Pharmacol 559(1):61–64.  https://doi.org/10.1016/j.ejphar.2006.12.018CrossRefPubMedGoogle Scholar
  16. Galeotti N, Di Cesare ML, Mazzanti G, Bartolini A, Ghelardini C (2002) Menthol: a natural analgesic compound. Neurosci Lett 322.  https://doi.org/10.1016/S0304-3940(01)02527-7CrossRefGoogle Scholar
  17. Hall RD, Holden MA, Yeoman MM (1987) The accumulation of phenylpropanoid and capsaicinoid compounds in cell cultures and whole fruit of the chilli pepper, Capsicum frutescens mill. Plant Cell Tissue Organ Cult 8(2):163–176.  https://doi.org/10.1007/bf00043153CrossRefGoogle Scholar
  18. Harvell KP, Bosland PW (1997) The environment produces a significant effect on pungency of chilies. Hort Sci 32:1292Google Scholar
  19. Holland A, Kinnear S (2013) Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Mar Drugs 11(7):2239–2258.  https://doi.org/10.3390/md11072239CrossRefPubMedPubMedCentralGoogle Scholar
  20. Islam MN, Khalil MI, Islam MA, Gan SH (2014) Toxic compounds in honey. J Appl Toxicol 34(7):733–742.  https://doi.org/10.1002/jat.2952CrossRefPubMedGoogle Scholar
  21. Jennings KR, Brown DG, Wright DP (1986) Methyllycaconitine, a naturally occurring insecticide with a high affinity for the insect cholinergic receptor. Experientia 42(6):611–613.  https://doi.org/10.1007/bf01955557CrossRefGoogle Scholar
  22. Jordt S-E, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108(3):421–430.  https://doi.org/10.1016/S0092-8674(02)00637-2CrossRefPubMedGoogle Scholar
  23. Kakemoto E, Okuyama E, Nagata K, Ozoe Y (1999) Interaction of anisatin with rat brain gamma-aminobutyric acidA receptors: allosteric modulation by competitive antagonists. Biochem Pharmacol 58(4):617–621CrossRefGoogle Scholar
  24. Kamatou GPP, Vermaak I, Viljoen AM, Lawrence BM (2013) Menthol: a simple monoterpene with remarkable biological properties. Phytochemistry 96:15–25.  https://doi.org/10.1016/j.phytochem.2013.08.005CrossRefPubMedGoogle Scholar
  25. Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87(4):922–930CrossRefGoogle Scholar
  26. Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204(2):380–385.  https://doi.org/10.1111/nph.12887CrossRefPubMedGoogle Scholar
  27. Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74(13):4044–4053.  https://doi.org/10.1128/AEM.00353-08CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2(1):32–50.  https://doi.org/10.3945/an.110.000117CrossRefPubMedPubMedCentralGoogle Scholar
  29. King H (1948) 394. Curare alkaloids. Part VIII. Examination of commercial curare, Chondrodendron tomentosum R and P and Anomospermum grandifolium eichl. J Chem Soc (Resumed):1945–1949.  https://doi.org/10.1039/JR9480001945
  30. Krienitz L, Ballot A, Kotut K, Wiegand C, Putz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of lesser flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 43(2):141–148.  https://doi.org/10.1111/j.1574-6941.2003.tb01053.xCrossRefPubMedPubMedCentralGoogle Scholar
  31. Kudakasseril GJ, Staba EJ (1988) Insecticidal phytochemicals.  https://doi.org/10.1016/B978-0-12-715005-5.50038-8CrossRefGoogle Scholar
  32. Kumar P, Pandit SS, Steppuhn A, Baldwin IT (2014) Natural history-driven, plant-mediated RNAi-based study reveals <em>CYP6B46</em>‘s role in a nicotine-mediated antipredator herbivore defense. Proc Natl Acad Sci 111(4):1245–1252.  https://doi.org/10.1073/pnas.1314848111CrossRefPubMedGoogle Scholar
  33. Lashley KS (1917) The effects of strychnine and caffeine upon the rate of learning. Psychobiology 1.  https://doi.org/10.1037/h0075094CrossRefGoogle Scholar
  34. Lin Y, Qasim M, Hussain M, Akutse K, Avery P, Dash C, Wang L (2017) The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi. Sci Rep:7, 40494.  https://doi.org/10.1038/srep40494
  35. Ma LJ, Gu RH, Tang L, Chen ZE, Di R, Long CL (2015) Important poisonous plants in tibetan ethnomedicine. Toxins (Basel) 7(1):138–155.  https://doi.org/10.3390/toxins7010138CrossRefGoogle Scholar
  36. Mauck WL, Olson LE (1976) Toxicity of natural pyrethrins and five pyrethroids to fish. Arch Environ Contam Toxicol 4(1):18–29CrossRefGoogle Scholar
  37. McGaugh JL, Roozendaal B (2009) Drug enhancement of memory consolidation: historical perspective and neurobiological implications. Psychopharmacology 202(1):3–14.  https://doi.org/10.1007/s00213-008-1285-6CrossRefPubMedGoogle Scholar
  38. McLaughlin GA (1973) Chapter 1 – history of pyrethrum A2 - CASIDA. In: John E (ed) Pyrethrum. Academic Press, New York, pp 3–15.  https://doi.org/10.1016/B978-0-12-162950-2.50008-9CrossRefGoogle Scholar
  39. Mebs D, Schäfer C (2008) Kleopatra und der Kobrabiß – das Ende eines Mythos?, vol 90. doi: https://doi.org/10.1524/klio.2008.0015
  40. Meghvansi MK, Siddiqui S, Khan MH, Gupta VK, Vairale MG, Gogoi HK, Singh L (2010) Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J Ethnopharmacol 132(1):1–14.  https://doi.org/10.1016/j.jep.2010.08.034CrossRefPubMedGoogle Scholar
  41. Miles WR (1929) Drug effects measured by acquired patterns of response. Am J Physiol 90:451–451Google Scholar
  42. Mody NV, Henson R, Hedin PA, Kokpol U, Miles DH (1976) Isolation of the insect paralyzing agent coniine fromSarracenia flava. Experientia 32(7):829–830.  https://doi.org/10.1007/bf02003710CrossRefGoogle Scholar
  43. Mos L (2001) Domoic acid: a fascinating marine toxin. Environ Toxicol Pharmacol 9(3):79–85.  https://doi.org/10.1016/S1382-6689(00)00065-XCrossRefPubMedGoogle Scholar
  44. Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR (2002) The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89(6):921–928.  https://doi.org/10.3732/ajb.89.6.921CrossRefPubMedGoogle Scholar
  45. Olney JW, Rhee V, Ho OL (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77(3):507–512.  https://doi.org/10.1016/0006-8993(74)90640-4CrossRefPubMedGoogle Scholar
  46. Pelletier PJ, Caventou JB (1819) Mémoire sur un nouvel alcali vegetal (la strychnine) trouvé dans la feve de Saint-Ignace, la noix vomique, etc. Annales de Chimie et de Physique 10:142–176Google Scholar
  47. Perry L, Dickau R, Zarrillo S, Holst I, Pearsall DM, Piperno DR, Berman MJ, Cooke RG, Rademaker K, Ranere AJ, Raymond JS, Sandweiss DH, Scaramelli F, Tarble K, Zeidler JA (2007) Starch fossils and the domestication and dispersal of chili peppers (<em>Capsicum</em> spp. L.) in the Americas. Science 315(5814):986–988.  https://doi.org/10.1126/science.1136914CrossRefPubMedGoogle Scholar
  48. Philippe G, Angenot L, Tits M, Frédérich M (2004) About the toxicity of some Strychnos species and their alkaloids. Toxicon 44(4):405–416.  https://doi.org/10.1016/j.toxicon.2004.05.006CrossRefPubMedGoogle Scholar
  49. Popik P, Layer RT, Fossom LH, Benveniste M, Geter-Douglass B, Witkin JM, Skolnick P (1995) NMDA antagonist properties of the putative antiaddictive drug, ibogaine. J Pharmacol Exp Ther 275(2):753–760PubMedGoogle Scholar
  50. Premkumar LS (2014) Transient receptor potential channels as targets for phytochemicals. ACS Chem Neurosci 5(11):1117–1130.  https://doi.org/10.1021/cn500094aCrossRefPubMedPubMedCentralGoogle Scholar
  51. Ramirez AM, Stoopen G, Menzel TR, Gols R, Bouwmeester HJ, Dicke M, Jongsma MA (2012) Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings. Plant Cell 24(10):4252–4265.  https://doi.org/10.1105/tpc.112.105031CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ramirez AM, Saillard N, Yang T, Franssen MC, Bouwmeester HJ, Jongsma MA (2013) Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). PLoS One 8(5):e65030.  https://doi.org/10.1371/journal.pone.0065030CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration inAnabaena andAphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxicAnabaena-strains — a laboratory study. J Appl Phycol 5(6):581–591.  https://doi.org/10.1007/bf02184637CrossRefGoogle Scholar
  54. Rogers EF, Koniuszy FR, Shavel J, Folkers K (1948) Plant insecticides; ryanodine, a new alkaloid from Ryania speciosa Vahl. J Am Chem Soc 70(9):3086–3088.  https://doi.org/10.1021/ja01189a074CrossRefPubMedGoogle Scholar
  55. Santulli G, Marks AR (2015) Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol 8(2):206–222CrossRefGoogle Scholar
  56. Schep LJ, Slaughter RJ, Becket G, Beasley DM (2009) Poisoning due to water hemlock. Clin Toxicol (Phila) 47(4):270–278.  https://doi.org/10.1080/15563650902904332CrossRefGoogle Scholar
  57. Smith BA (1990) Strychnine poisoning. J Emerg Med 8(3):321–325.  https://doi.org/10.1016/0736-4679(90)90013-LCrossRefPubMedGoogle Scholar
  58. Soderlun DM, Lee SH (2001) Point mutations in homology domain II modify the sensitivity of rat Nav1.8 sodium channels to the pyrethroid insecticide cismethrin. Neurotoxicology 22(6):755–765CrossRefGoogle Scholar
  59. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171(1):3–59CrossRefGoogle Scholar
  60. Tewksbury JJ, Nabhan GP (2001) Directed deterrence by capsaicin in chillies. Nature 412:403.  https://doi.org/10.1038/35086653CrossRefPubMedGoogle Scholar
  61. Thomas NL, Williams AJ (2012) Pharmacology of ryanodine receptors and Ca2+−induced Ca2+ release. Wiley Interdiscip Rev Membr Transp Signal 1(4):383–397.  https://doi.org/10.1002/wmts.34CrossRefGoogle Scholar
  62. Tufariello JJ, Meckler H, Senaratne KP (1984) Synthesis of anatoxin-a: very fast death factor. J Am Chem Soc 106(25):7979–7980.  https://doi.org/10.1021/ja00337a059CrossRefGoogle Scholar
  63. Vais H, Atkinson S, Eldursi N, Devonshire AL, Williamson MS, Usherwood PN (2000) A single amino acid change makes a rat neuronal sodium channel highly sensitive to pyrethroid insecticides. FEBS Lett 470(2):135–138CrossRefGoogle Scholar
  64. Vetter J (2004) Poison hemlock (Conium maculatum L.). Food Chem Toxicol 42(9):1373–1382.  https://doi.org/10.1016/j.fct.2004.04.009CrossRefPubMedGoogle Scholar
  65. Walker N, Howe C, Glover M, McRobbie H, Barnes J, Nosa V, Parag V, Bassett B, Bullen C (2014) Cytisine versus nicotine for smoking cessation. N Engl J Med 371(25):2353–2362.  https://doi.org/10.1056/NEJMoa1407764CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wennig R (2009) Back to the roots of modern analytical toxicology: Jean Servais Stas and the Bocarmé murder case. Drug Test Anal 1(4):153–155.  https://doi.org/10.1002/dta.32CrossRefPubMedGoogle Scholar
  67. Wickham R (2015) How menthol alters tobacco-smoking behavior: a biological perspective. Yale J Biol Med 88:279–287PubMedPubMedCentralGoogle Scholar
  68. Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 8(7):2185–2211.  https://doi.org/10.3390/md8072185CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wink M, Theile V (2002) Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae). Chemoecology 12(1):29–46.  https://doi.org/10.1007/s00049-002-8324-2CrossRefGoogle Scholar
  70. Wolf FW, Heberlein U (2003) Invertebrate models of drug abuse. J Neurobiol 54(1):161–178.  https://doi.org/10.1002/neu.10166CrossRefPubMedGoogle Scholar
  71. Zhou DS, Wang CZ, van Loon JJA (2009) Chemosensory basis of behavioural plasticity in response to deterrent plant chemicals in the larva of the small cabbage white butterfly Pieris rapae. J Insect Physiol 55(9):788–792.  https://doi.org/10.1016/j.jinsphys.2009.04.011CrossRefPubMedGoogle Scholar
  72. Zubaran C (2000) Ibogaine and noribogaine: comparing parent compound to metabolite. CNS Drug Rev 6(3):219–240.  https://doi.org/10.1111/j.1527-3458.2000.tb00149.xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Angelika Böttger
    • 1
    Email author
  • Ute Vothknecht
    • 2
  • Cordelia Bolle
    • 3
  • Alexander Wolf
    • 4
  1. 1.Department Biology IILMU MunichPlanegg-MartinsriedGermany
  2. 2.IZMB-Plant Cell BiologyUniversity of BonnBonnGermany
  3. 3.Department Biology ILMU MunichPlanegg-MartinsriedGermany
  4. 4.Inst. Molecular Toxicology/PharmacologyHelmholtz Zentrum MünichNeuherbergGermany

Personalised recommendations