Ion Channels as Targets for Plant-Derived Drugs

  • Angelika BöttgerEmail author
  • Ute Vothknecht
  • Cordelia Bolle
  • Alexander Wolf
Part of the Learning Materials in Biosciences book series (LMB)


Gated ion channels open or close in response to changes in membrane potential, binding of ligands at extracellular or intracellular sites, or mechanical stimuli. Many natural products including plant-derived drugs and plant and animal toxins interfere with the function of ion channels. Here we first discuss neurotoxin binding to voltage-gated ion channels. Nicotine is an agonist for the nicotinic acetylcholine receptor (NAchR). Moreover, many drugs including thujone and synthetic drugs, such as benzamidines, bind to GABA receptors, whereas strychnine antagonizes glycine receptors, e.g. such which mediate feedback signals after muscle contraction. We describe the three isoforms of glutamate receptors and the action of some psychoactive compounds, e.g. ketamine and PCP. Finally, TRPV receptors are briefly touched in connection with their sensing of heat, inflammatory cytokines and the action of capsaicin. In contrast, TRPM8 is described as a cold sensor activated by menthol and related compounds.


  1. Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309CrossRefGoogle Scholar
  2. Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19CrossRefGoogle Scholar
  3. Brams M, Pandya A, Kuzmin D, van Elk R, Krijnen L, Yakel JL, Tsetlin V, Smit AB, Ulens C (2011) A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. PLoS Biol 9:e1001034CrossRefGoogle Scholar
  4. Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2014) TRPV1: a potential drug target for treating various diseases. Cell 3:517–545CrossRefGoogle Scholar
  5. Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892CrossRefGoogle Scholar
  6. Cioffi CL (2013) Modulation of NMDA receptor function as a treatment for schizophrenia. Bioorg Med Chem Lett 23:5034–5044CrossRefGoogle Scholar
  7. Daly JW (2005) Nicotinic agonists, antagonists, and modulators from natural sources. Cell Mol Neurobiol 25:513–552CrossRefGoogle Scholar
  8. Hayashi T (1954) effects of sodium glutamate on the nervous system. Keio J Med 3(4):183–192CrossRefGoogle Scholar
  9. Hold KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) Alpha-thujone (the active component of absinthe): gamma-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci U S A 97:3826–3831CrossRefGoogle Scholar
  10. Johnston GA (2014) Muscimol as an ionotropic GABA receptor agonist. Neurochem Res 39:1942–1947CrossRefGoogle Scholar
  11. Krienitz L, Ballot A, Kotut K, Wiegand C, Putz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 43:141–148CrossRefGoogle Scholar
  12. Li D, He L (2007) Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis. Genet Med 9:4–8CrossRefGoogle Scholar
  13. Luger D, Poli G, Wieder M, Stadler M, Ke S, Ernst M, Hohaus A, Linder T, Seidel T, Langer T, Khom S, Hering S (2015) Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis. Br J Pharmacol 172:5403–5413CrossRefGoogle Scholar
  14. Lynagh T, Pless SA (2014) Principles of agonist recognition in Cys-loop receptors. Front Physiol 5:160CrossRefGoogle Scholar
  15. Noguchi T, Jeon JK, Arakawa O, Sugita H, Deguchi Y, Shida Y, Hashimoto K (1986) Occurrence of tetrodotoxin and anhydrotetrodotoxin in Vibrio sp. isolated from the intestines of a xanthid crab, Atergatis floridus. J Biochem 99:311–314CrossRefGoogle Scholar
  16. Nys M, Kesters D, Ulens C (2013) Structural insights into Cys-loop receptor function and ligand recognition. Biochem Pharmacol 86:1042–1053CrossRefGoogle Scholar
  17. Olsen RW (2015) Allosteric ligands and their binding sites define gamma-aminobutyric acid (GABA) type A receptor subtypes. Adv Pharmacol 73:167–202CrossRefGoogle Scholar
  18. Proudfoot A (2006) The early toxicology of physostigmine: a tale of beans, great men and egos. Toxicol Rev 25:99–138CrossRefGoogle Scholar
  19. Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287:40224–40231CrossRefGoogle Scholar
  20. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59CrossRefGoogle Scholar
  21. Tilley DC, Eum KS, Fletcher-Taylor S, Austin DC, Dupre C, Patron LA, Garcia RL, Lam K, Yarov-Yarovoy V, Cohen BE, Sack JT (2014) Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells. Proc Natl Acad Sci U S A 111:E4789–E4796CrossRefGoogle Scholar
  22. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496CrossRefGoogle Scholar
  23. Trudell JR, Messing RO, Mayfield J, Harris RA (2014) Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci 35:317–323CrossRefGoogle Scholar
  24. Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769PubMedGoogle Scholar
  25. Vais H, Atkinson S, Eldursi N, Devonshire AL, Williamson MS, Usherwood PN (2000) A single amino acid change makes a rat neuronal sodium channel highly sensitive to pyrethroid insecticides. FEBS Lett 470:135–138CrossRefGoogle Scholar
  26. Walker N, Howe C, Glover M, McRobbie H, Barnes J, Nosa V, Parag V, Bassett B, Bullen C (2014) Cytisine versus nicotine for smoking cessation. N Engl J Med 371:2353–2362CrossRefGoogle Scholar
  27. Watkins SM, Reich A, Fleming LE, Hammond R (2008) Neurotoxic shellfish poisoning. Mar Drugs 6:431–455CrossRefGoogle Scholar
  28. Yudin Y, Rohacs T (2012) Regulation of TRPM8 channel activity. Mol Cell Endocrinol 353:68–74CrossRefGoogle Scholar
  29. Zhang G, Lin RL, Wiggers M, Snow DM, Lee LY (2008a) Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J Physiol 586:5771–5786CrossRefGoogle Scholar
  30. Zhang P, Gao W, Zhang L, Chen L, Shen Q, Wang X, Cui Y (2008b) In vitro evaluation of topical microemulsion of capsaicin free of surfactant. Biol Pharm Bull 31:2316–2320CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Angelika Böttger
    • 1
    Email author
  • Ute Vothknecht
    • 2
  • Cordelia Bolle
    • 3
  • Alexander Wolf
    • 4
  1. 1.Department Biology IILMU MunichPlanegg-MartinsriedGermany
  2. 2.IZMB-Plant Cell BiologyUniversity of BonnBonnGermany
  3. 3.Department Biology ILMU MunichPlanegg-MartinsriedGermany
  4. 4.Inst. Molecular Toxicology/PharmacologyHelmholtz Zentrum MünichNeuherbergGermany

Personalised recommendations