Advertisement

Minor Groups of Secondary Metabolites

  • Angelika Böttger
  • Ute Vothknecht
  • Cordelia Bolle
  • Alexander Wolf
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Besides the classical groups of alkaloids, phenylpropanoids and isoprenoids, several other biosynthesis pathways produce important classes of secondary metabolites. These include especially cannabinoids and fatty acid-derived compounds.

References

  1. Aza-Gonzalez C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp). Plant Cell Rep 30:695–706.  https://doi.org/10.1007/s00299-010-0968-8CrossRefPubMedGoogle Scholar
  2. Berger M, Chen Y, Bampali K, Ernst M, Maulide N (2018) Expeditious synthesis of polyacetylenic water hemlock toxins and their effects on the major GABAA receptor isoform. Chem Commun (Camb) 54:2008–2011.  https://doi.org/10.1039/c7cc09801dCrossRefGoogle Scholar
  3. Blancaflor EB, Kilaru A, Keereetaweep J, Khan BR, Faure L, Chapman KD (2014) N-Acylethanolamines: lipid metabolites with functions in plant growth and development. Plant J 79:568–583.  https://doi.org/10.1111/tpj.12427CrossRefPubMedGoogle Scholar
  4. Bourdelais AJ, Campbell S, Jacocks H, Naar J, Wright JL, Carsi J, Baden DG (2004) Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays. Cell Mol Neurobiol 24:553–563CrossRefGoogle Scholar
  5. Bourdelais AJ, Jacocks HM, Wright JL, Bigwarfe PM Jr, Baden DG (2005) A new polyether ladder compound produced by the dinoflagellate Karenia brevis. J Nat Prod 68:2–6.  https://doi.org/10.1021/np049797oCrossRefPubMedPubMedCentralGoogle Scholar
  6. Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ (2012a) N-Acylethanolamines and related compounds: aspects of metabolism and functions. Plant Sci 184:129–140.  https://doi.org/10.1016/j.plantsci.2011.12.015CrossRefPubMedGoogle Scholar
  7. Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ (2012b) Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE). Biochimie 94:75–85.  https://doi.org/10.1016/j.biochi.2011.04.023CrossRefPubMedGoogle Scholar
  8. Dawid C, Dunemann F, Schwab W, Nothnagel T, Hofmann T (2015) Bioactive C(1)(7)-polyacetylenes in carrots (Daucus carota L.): current knowledge and future perspectives. J Agric Food Chem 63:9211–9222.  https://doi.org/10.1021/acs.jafc.5b04357CrossRefPubMedGoogle Scholar
  9. Felder CC, Briley EM, Axelrod J, Simpson JT, Mackie K, Devane WA (1993) Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc Natl Acad Sci U S A 90:7656–7660CrossRefGoogle Scholar
  10. Flores-Sanchez IJ, Verpoorte R (2008) PKS activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L. plants. Plant Cell Physiol 49:1767–1782.  https://doi.org/10.1093/pcp/pcn150CrossRefPubMedGoogle Scholar
  11. Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 109:12811–12816.  https://doi.org/10.1073/pnas.1200330109CrossRefPubMedPubMedCentralGoogle Scholar
  12. Garcia-Cairasco N et al (2013) Elucidating the neurotoxicity of the star fruit. Angew Chem Int Ed Engl 52:13067–13070.  https://doi.org/10.1002/anie.201305382CrossRefPubMedGoogle Scholar
  13. Gold EP, Jacocks HM, Bourdelais AJ, Baden DG (2013) Brevenal, a brevetoxin antagonist from Karenia brevis, binds to a previously unreported site on mammalian sodium channels. Harmful Algae 26:12–19.  https://doi.org/10.1016/j.hal.2013.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  14. Green BT, Welch KD, Panter KE, Lee ST (2013) Plant toxins that affect nicotinic acetylcholine receptors: a review. Chem Res Toxicol 26:1129–1138.  https://doi.org/10.1021/tx400166fCrossRefPubMedGoogle Scholar
  15. Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91:966–975.  https://doi.org/10.3732/ajb.91.6.966CrossRefPubMedGoogle Scholar
  16. Keereetaweep J, Blancaflor EB, Hornung E, Feussner I, Chapman KD (2013) Ethanolamide oxylipins of linolenic acid can negatively regulate Arabidopsis seedling development. Plant Cell 25:3824–3840.  https://doi.org/10.1105/tpc.113.119024CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kilaru A, Blancaflor EB, Venables BJ, Tripathy S, Mysore KS, Chapman KD (2007) The N-acylethanolamine-mediated regulatory pathway in plants. Chem Biodivers 4(8):1933–1955CrossRefGoogle Scholar
  18. Kim E, Mahlberg P (1997) Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). Am J Bot 84:336CrossRefGoogle Scholar
  19. Kim ES, Mahlberg PG (2003) Secretory vesicle formation in the secretory cavity of glandular trichomes of Cannabis sativa L. (Cannabaceae). Mol Cells 15:387–395PubMedGoogle Scholar
  20. Leonti M, Casu L, Raduner S, Cottiglia F, Floris C, Altmann KH, Gertsch J (2010) Falcarinol is a covalent cannabinoid CB1 receptor antagonist and induces pro-allergic effects in skin. Biochem Pharmacol 79:1815–1826.  https://doi.org/10.1016/j.bcp.2010.02.015CrossRefPubMedGoogle Scholar
  21. Minto RE, Blacklock BJ (2008) Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 47:233–306.  https://doi.org/10.1016/j.plipres.2008.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:186–200.  https://doi.org/10.1105/tpc.107.055178CrossRefPubMedPubMedCentralGoogle Scholar
  23. Negri R (2015) Polyacetylenes from terrestrial plants and fungi: recent phytochemical and biological advances. Fitoterapia 106:92–109.  https://doi.org/10.1016/j.fitote.2015.08.011CrossRefPubMedGoogle Scholar
  24. Nielsen LT, Hansen PJ, Krock B, Vismann B (2016) Accumulation, transformation and breakdown of DSP toxins from the toxic dinoflagellate Dinophysis acuta in blue mussels, Mytilus edulis. Toxicon 117:84–93.  https://doi.org/10.1016/j.toxicon.2016.03.021CrossRefPubMedGoogle Scholar
  25. Otles S, Yalcin B (2012) Phenolic compounds analysis of root, stalk, and leaves of nettle. ScientificWorldJournal 2012:564367.  https://doi.org/10.1100/2012/564367CrossRefPubMedPubMedCentralGoogle Scholar
  26. Panter KE, Keeler RF (1989) Chapter 5—Piperidine alkaloids of poison hemlock (Conium maculatum). In: Toxicants of plant origin, vol I. CRC Press, Boca RatonGoogle Scholar
  27. Raduner S et al (2006) Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem 281:14192–14206.  https://doi.org/10.1074/jbc.M601074200CrossRefPubMedGoogle Scholar
  28. Raharjo TJ, Widjaja I, Roytrakul S, Verpoorte R (2004) Comparative proteomics of Cannabis sativa plant tissues. J Biomol Tech 15:97–106PubMedPubMedCentralGoogle Scholar
  29. Rein KS, Snyder RV (2006) The biosynthesis of polyketide metabolites by dinoflagellates. Adv Appl Microbiol 59:93–125.  https://doi.org/10.1016/S0065-2164(06)59004-5CrossRefPubMedPubMedCentralGoogle Scholar
  30. Reynolds T (2005) Hemlock alkaloids from Socrates to poison aloes. Phytochemistry 66:1399–1406.  https://doi.org/10.1016/j.phytochem.2005.04.039CrossRefPubMedGoogle Scholar
  31. Rios MY, Aguilar-Guadarrama AB, Gutierrez Mdel C (2007) Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). J Ethnopharmacol 110:364–367.  https://doi.org/10.1016/j.jep.2006.09.041CrossRefPubMedGoogle Scholar
  32. Rizhsky L et al (2016) Integrating metabolomics and transcriptomics data to discover a biocatalyst that can generate the amine precursors for alkamide biosynthesis. Plant J 88:775–793.  https://doi.org/10.1111/tpj.13295CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582.  https://doi.org/10.1093/pcp/pci166CrossRefPubMedGoogle Scholar
  34. Stewart C Jr, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991.  https://doi.org/10.1093/jxb/erl243CrossRefPubMedGoogle Scholar
  35. Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365.  https://doi.org/10.1111/j.1365-313X.2012.04949.xCrossRefPubMedGoogle Scholar
  36. Teaster ND et al (2007) N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell 19:2454–2469.  https://doi.org/10.1105/tpc.106.048702CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tretyn A, Kendrick RE (1991) Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev 57(1):33–73.  https://doi.org/10.1007/BF02858764CrossRefGoogle Scholar
  38. Van Wagoner RM, Satake M, Wright JL (2014) Polyketide biosynthesis in dinoflagellates: what makes it different? Nat Prod Rep 31:1101–1137.  https://doi.org/10.1039/c4np00016aCrossRefPubMedGoogle Scholar
  39. Woelkart K, Salo-Ahen OM, Bauer R (2008) CB receptor ligands from plants. Curr Top Med Chem 8:173–186CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Angelika Böttger
    • 1
  • Ute Vothknecht
    • 2
  • Cordelia Bolle
    • 3
  • Alexander Wolf
    • 4
  1. 1.Department Biology IILMU MunichPlanegg-MartinsriedGermany
  2. 2.IZMB-Plant Cell BiologyUniversity of BonnBonnGermany
  3. 3.Department Biology ILMU MunichPlanegg-MartinsriedGermany
  4. 4.Inst. Molecular Toxicology/PharmacologyHelmholtz Zentrum MünichNeuherbergGermany

Personalised recommendations