Mobile Wheeled Robots

  • Stefan StaicuEmail author
Part of the Parallel Robots: Theory and Applications book series (PRTA)


While the classical holonomic constraints limit the freedom of motion through the position variables, and thus simultaneously through the velocity variables, the non-holonomic constraints, realized purely mechanically via (for example) rolling wheels, lead to a restriction of the velocities only, not of the positions. The non-holonomic constraints pertain to the kinematical constraints and can be either scleronomic or rheonomic. A transport car with two independent wheels is characterized by the fact that the mid-point cannot move in either of the two body-fixed directions, owing to the friction forces on the wheels.


  1. 1.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Springer, New York (2002)zbMATHGoogle Scholar
  2. 2.
    Papadopoulos, E., Poulakakis, E.: On motion planning of non-holonomic mobile robots. In: Proceedings of International Symposium on Robotics, Montréal, pp. 77–82 (2000)Google Scholar
  3. 3.
    Baron, L., Angeles, J.: The direct kinematics of parallel manipulators under joint-sensor redundancy. IEEE Trans. Robot. Autom. 16(1), 12–19 (2000)CrossRefGoogle Scholar
  4. 4.
    Velinski, S.A., Gardner, J.F.: Kinematics of mobile manipulator and implications for design. J. Robot. Syst. 17(6) (2000)Google Scholar
  5. 5.
    Lerbet, J.: Mécanique des systèmes de solides rigides comportant des boucles fermées. Thesis, Paris (1987)Google Scholar
  6. 6.
    Abou-Samah, M., Krovi, V.: Cooperative frameworks for multiple mobile robots. In: Proceedings of CCToMM Symposium on Mechanisms, Machines and Mechatronics, Canadian Space Agency, Montréal (2001)Google Scholar
  7. 7.
    Agulló, J., Cardona, S., Vivancos, J.: Kinematics of vehicle with directional sliding wheels. Mech. Mach. Theory 22(4), 295–301 (1987)CrossRefGoogle Scholar
  8. 8.
    Muir, F.P., Neuman, C.P.: Kinematic modeling of mobile robots. J. Robot. Syst. 4(2), 281–304 (1987)CrossRefGoogle Scholar
  9. 9.
    Staicu, S.: Dynamics analysis of the Star parallel manipulator. Robot. Auton. Syst. 57(11), 1057–1064 (2009)CrossRefGoogle Scholar
  10. 10.
    Giergiel, J., Zylski, W.: Description of motion of a mobile robot by Maggie’s equations. J. Theor. Appl. Mech., Warsaw 43(3), 511–521 (2005)Google Scholar
  11. 11.
    Hendzel, Z.: An adaptive critic network for motion control of a wheeled mobile robot. Nonlinear Dyn. 50(4), 849–855 (2007)CrossRefGoogle Scholar
  12. 12.
    Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Rob. 21(3), 505–513 (2005)CrossRefGoogle Scholar
  13. 13.
    Gracia, L., Tornero, J.: Kinematic modelling and singularity of wheeled mobile robots. Adv. Robot. 21(7), 793–816 (2007)CrossRefGoogle Scholar
  14. 14.
    Chakraborty, N., Ghosal, A.: Kinematics of wheeled mobile robots on uneven terrain. Mech. Mach. Theory 39(12), 1273–1287 (2004)CrossRefGoogle Scholar
  15. 15.
    Chakraborty, N., Ghosal, A.: Dynamic modelling and simulation of a wheeled mobile robot for traversing uneven terrain without slip. J. Mech. Des. 127(5), 901–909 (2005)CrossRefGoogle Scholar
  16. 16.
    Salerno, A., Angeles, J.: On the nonlinear controllability of a quasi-holonomic mobile robot. In: Proceedings of IEEE International Conference on Robotics & Automation, ICRA’2003, Taipei, vol. 3, pp. 3379–3384 (2003)Google Scholar
  17. 17.
    Salerno, A., Ostrovskaya, S., Angeles, J.: The dynamics of a novel rolling robot: analysis and simulation. In: Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, pp. 1956–1960 (2004)Google Scholar
  18. 18.
    Staicu, S., Liu, X.-J., Wang, J.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1–2), 1–12 (2007)CrossRefGoogle Scholar
  19. 19.
    Cheng, H.H., Lee, J.J., Penkar, R.: Kinematic analysis of a hybrid serial-and-parallel-driven redundant industrial manipulator. Int. J. Robot. Autom. 10(4), 159–166 (1995)Google Scholar
  20. 20.
    Staicu, S.: Matrix modeling of inverse dynamics of spatial and planar parallel robots. Multibody Syst. Dyn. 27(2), 239–265 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Colbaugh, R., Trabatti, M., Glass, K.: Redundant non-holonomic mechanical system: characterization and control. Robotica. 17(2), 203–217 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MechanicsUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations