Advertisement

Radiation Protection

  • Ruben Pauwels
Chapter

Abstract

This chapter deals with radiation protection aspects of temporomandibular joint (TMJ) imaging techniques involving ionizing radiation. Due to stochastic effects and, at very high doses, tissue reactions caused by X-rays, radiation protection of patients, staff, and public should always be taken into account. Specifically, for patients, every exposure should be justified and optimized, by selecting the most appropriate imaging technique for individual patients and ensuring that the patient dose is as low as reasonably achievable. For staff and public, dose limits need to be adhered to.

Keywords

Radiation protection Radiation dose Effective dose Justification Optimization 

References

  1. 1.
    ICRP, International Commission on Radiological Protection. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37:1–332.Google Scholar
  2. 2.
    NRC, National Research Council of the National Academies. Health risks from exposure to low levels of ionizing radiation: BEIR VII – phase 2. Washington, DC: The National Academies Press; 2006.Google Scholar
  3. 3.
    Hendee WR, Ritenour ER. Medical imaging physics. 4th ed. New York: Wiley-Liss; 2002.CrossRefGoogle Scholar
  4. 4.
    ICRP, International Commission on Radiological Protection. Recommendations of the ICRP. ICRP Publication 26. Ann ICRP. 1977;1:1–53.CrossRefGoogle Scholar
  5. 5.
    Martin CJ. Effective dose: how should it be applied to medical exposures? Br J Radiol. 2007;80:639–47.CrossRefGoogle Scholar
  6. 6.
    Matsuo A, Okano T, Gotoh K, Yokoi M, Hirukawa A, Okumura S, Koyama S. Absorbed dose and the effective dose of panoramic temporo mandibular joint radiography. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2011;67:1275–83. [Article in Japanese].CrossRefGoogle Scholar
  7. 7.
    Chinem LA, Vilella BDS, Maurício CL, Canevaro LV, Deluiz LF, Vilella ODV. Digital orthodontic radiographic set versus cone-beam computed tomography: an evaluation of the effective dose. Dental Press J Orthod. 2016;21:66–72.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Signorelli L, Patcas R, Peltomäki T, Schätzle M. Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics. J Orofac Orthop. 2016;77:9–15.CrossRefGoogle Scholar
  9. 9.
    Granlund C, Thilander-Klang A, Ylhan B, Lofthag-Hansen S, Ekestubbe A. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations. Br J Radiol. 2016;89:20151052.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lee C, Lee SS, Kim JE, Huh KH, Yi WJ, Heo MS, Choi SC. Comparison of dosimetry methods for panoramic radiography: thermoluminescent dosimeter measurement versus personal computer-based Monte Carlo method calculation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:322–9.CrossRefGoogle Scholar
  11. 11.
    Davis AT, Safi H, Maddison SM. The reduction of dose in paediatric panoramic radiography: the impact of collimator height and programme selection. Dentomaxillofac Radiol. 2015;44:20140223.CrossRefGoogle Scholar
  12. 12.
    Shin HS, Nam KC, Park H, Choi HU, Kim HY, Park CS. Effective doses from panoramic radiography and CBCT (cone beam CT) using dose area product (DAP) in dentistry. Dentomaxillofac Radiol. 2014;43:20130439.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Han GS, Cheng JG, Li G, Ma XC. Shielding effect of thyroid collar for digital panoramic radiography. Dentomaxillofac Radiol. 2013;42:20130265.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lee GS, Kim JS, Seo YS, Kim JD. Effective dose from direct and indirect digital panoramic units. Imaging Sci Dent. 2013;43:77–84.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kadesjö N, Benchimol D, Falahat B, Näsström K, Shi XQ. Evaluation of the effective dose of cone beam CT and multislice CT for temporomandibular joint examinations at optimized exposure levels. Dentomaxillofac Radiol. 2015;44:20150041.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lukat TD, Wong JC, Lam EW. Small field of view cone beam CT temporomandibular joint imaging dosimetry. Dentomaxillofac Radiol. 2013;42:20130082.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, Cockmartin L, Bosmans H, Jacobs R, Bogaerts R, Horner K, SEDENTEXCT Project Consortium. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol. 2012;81:267–71.CrossRefGoogle Scholar
  18. 18.
    Al-Okshi A, Lindh C, Salé H, Gunnarsson M, Rohlin M. Effective dose of cone beam CT (CBCT) of the facial skeleton: a systematic review. Br J Radiol. 2015;88:20140658.CrossRefGoogle Scholar
  19. 19.
    Boeddinghaus R, Whyte A. Computed tomography of the temporomandibular joint. J Med Imaging Radiat Oncol. 2013;57:448–54.CrossRefGoogle Scholar
  20. 20.
    Widmann G, Juranek D, Waldenberger F, Schullian P, Dennhardt A, Hoermann R, Steurer M, Gassner EM, Puelacher W. Influence of ultra-low-dose and iterative reconstructions on the visualization of orbital soft tissues on maxillofacial CT. AJNR Am J Neuroradiol. 2017;38:1630–5.CrossRefGoogle Scholar
  21. 21.
    Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248:995–1003.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Widmann G, Schullian P, Gassner EM, Hoermann R, Bale R, Puelacher W. Ultralow-dose CT of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction and model-based iterative reconstruction: 2D and 3D image quality. AJR Am J Roentgenol. 2015;204:563–9.CrossRefGoogle Scholar
  23. 23.
    Bang M, Choi SH, Park J, Kang BS, Kwon WJ, Lee TH, Nam JG. Radiation dose reduction in paranasal sinus CT: with feasibility of iterative reconstruction technique. Otolaryngol Head Neck Surg. 2016;155:982–7.CrossRefGoogle Scholar
  24. 24.
    Aksoy EA, Özden SU, Karaarslan E, Ünal ÖF, Tanyeri H. Reliability of high-pitch ultra-low-dose paranasal sinus computed tomography for evaluating paranasal sinus anatomy and sinus disease. J Craniofac Surg. 2014;25:1801–4.CrossRefGoogle Scholar
  25. 25.
    Acord M, Shellikeri S, Vatsky S, Srinivasan A, Krishnamurthy G, Keller MS, Cahill AM. Reduced-dose C-arm computed tomography applications at a pediatric institution. Pediatr Radiol. 2017;47:1817–24.CrossRefGoogle Scholar
  26. 26.
    Zhu X, Felice M, Johnson L, Sarmiento M, Cahill AM. Developing low-dose C-arm CT imaging for temporomandibular joint (TMJ) disorder in interventional radiology. Pediatr Radiol. 2011;41:476–82.CrossRefGoogle Scholar
  27. 27.
    IAEA, International Atomic Energy Agency. Radiation protection and safety of radiation sources: international basic safety standards. In: General safety requirements part 3. Vienna: IAEA; 2014. Available at https://www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf.Google Scholar
  28. 28.
    Pauwels R, Zhang G, Theodorakou C, Walker A, Bosmans H, Jacobs R, Bogaerts R, Horner K, SEDENTEXCT Project Consortium. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation. Br J Radiol. 2014b;87:20130654.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Christner JA, Zavaletta VA, Eusemann CD, Walz-Flannigan AI, McCollough CH. Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation. AJR Am J Roentgenol. 2010;194:49–55.CrossRefGoogle Scholar
  30. 30.
    Pauwels R, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. Reduction of scatter-induced image noise in cone beam computed tomography: effect of field of view size and position. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:188–95.CrossRefGoogle Scholar
  31. 31.
    Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol. 2014a;43:20140059.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pauwels R, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. Determination of size-specific exposure settings in dental cone-beam CT. Eur Radiol. 2017;27:279–85.CrossRefGoogle Scholar
  33. 33.
    Librizzi ZT, Tadinada AS, Valiyaparambil JV, Lurie AG, Mallya SM. Cone-beam computed tomography to detect erosions of the temporomandibular joint: effect of field of view and voxel size on diagnostic efficacy and effective dose. Am J Orthod Dentofac Orthop. 2011;140:e25–30.CrossRefGoogle Scholar
  34. 34.
    Alibek S, Brand M, Suess C, Wuest W, Uder M, Greess H. Dose reduction in pediatric computed tomography with automated exposure control. Acad Radiol. 2011;18:690–3.CrossRefGoogle Scholar
  35. 35.
    Pauwels R, Seynaeve L, Henriques JC, de Oliveira-Santos C, Souza PC, Westphalen FH, Rubira-Bullen IR, Ribeiro-Rotta RF, Rockenbach MI, Haiter-Neto F, Pittayapat P, Bosmans H, Bogaerts R, Jacobs R. Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofac Radiol. 2015;44:20150108.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kaplan S, Magill D, Felice MA, Xiao R, Ali S, Zhu X. Female gonadal shielding with automatic exposure control increases radiation risks. Pediatr Radiol. 2018;48(2):227–34.CrossRefGoogle Scholar
  37. 37.
    Goren AD, Prins RD, Dauer LT, Quinn B, Al-Najjar A, Faber RD, Patchell G, Branets I, Colosi DC. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom. Dentomaxillofac Radiol. 2013;42:20120260.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hidalgo A, Davies J, Horner K, Theodorakou C. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom. Dentomaxillofac Radiol. 2015;44:20140285.CrossRefGoogle Scholar
  39. 39.
    Qu X, Li G, Zhang Z, Ma X. Thyroid shields for radiation dose reduction during cone beam computed tomography scanning for different oral and maxillofacial regions. Eur J Radiol. 2012b;81:e376–80.CrossRefGoogle Scholar
  40. 40.
    Qu XM, Li G, Sanderink GC, Zhang ZY, Ma XC. Dose reduction of cone beam CT scanning for the entire oral and maxillofacial regions with thyroid collars. Dentomaxillofac Radiol. 2012a;41:373–8.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tsiklakis K, Donta C, Gavala S, Karayianni K, Kamenopoulou V, Hourdakis CJ. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur J Radiol. 2005;56:413–7.CrossRefGoogle Scholar
  42. 42.
    Prins R, Dauer LT, Colosi DC, Quinn B, Kleiman NJ, Bohle GC, Holohan B, Al-Najjar A, Fernandez T, Bonvento M, Faber RD, Ching H, Goren AD. Significant reduction in dental cone beam computed tomography (CBCT) eye dose through the use of leaded glasses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:502–7.CrossRefGoogle Scholar
  43. 43.
    Schulze RKW, Sazgar M, Karle H, de Las Heras Gala H. Influence of a commercial lead apron on patient skin dose delivered during oral and maxillofacial examinations under cone beam computed tomography (CBCT). Health Phys. 2017;113:129–34.CrossRefGoogle Scholar
  44. 44.
    Schulze RKW, Cremers C, Karle H, de Las Heras Gala H. Skin entrance dose with and without lead apron in digital panoramic radiography for selected sensitive body regions. Clin Oral Investig. 2017;21:1327–33.CrossRefGoogle Scholar
  45. 45.
    Rottke D, Patzelt S, Poxleitner P, Schulze D. Effective dose span of ten different cone beam CT devices. Dentomaxillofac Radiol. 2013;42:20120417.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Manousaridis G, Koukorava C, Hourdakis CJ, Kamenopoulou V, Yakoumakis E, Tsiklakis K. Establishment of diagnostic reference levels for dental panoramic radiography in Greece. Radiat Prot Dosim. 2015;165:111–4.CrossRefGoogle Scholar
  47. 47.
    Walker C, van der Putten W. Patient dosimetry and a novel approach to establishing Diagnostic Reference Levels in dental radiology. Phys Med. 2012;28:7–12.CrossRefGoogle Scholar
  48. 48.
    Lee JS, Kim YH, Yoon SJ, Kang BC. Reference dose levels for dental panoramic radiography in Gwangju, South Korea. Radiat Prot Dosim. 2010;142:184–90.CrossRefGoogle Scholar
  49. 49.
    HPA, Health Protection Agency. HPA-CRCE-034: doses to patients from radiographic and fluoroscopic x-ray imaging procedures in the UK (2010 review). Chilton: HPA; 2010.Google Scholar
  50. 50.
    Kim YH, Yang BE, Yoon SJ, Kang BC, Lee JS. Diagnostic reference levels for panoramic and lateral cephalometric radiography of Korean children. Health Phys. 2014;107:111–6.CrossRefGoogle Scholar
  51. 51.
    Han S, Lee B, Shin G, Choi J, Kim J, Park C, Park H, Lee K, Kim Y. Dose area product measurement for diagnostic reference levels and analysis of patient dose in dental radiography. Radiat Prot Dosim. 2012;150:523–31.CrossRefGoogle Scholar
  52. 52.
    NCRP, National Council on Radiation Protection and Measurements. Reference levels and achievable doses in medical and dental imaging: recommendations for the United States, NCRP Report No. 172. Bethesda: NCRP; 2012.Google Scholar
  53. 53.
    EC, European Comission. Radiation protection N° 180. Diagnostic reference levels in thirty-six European countries. Luxembourg: Publications Office of the European Union; 2012.Google Scholar
  54. 54.
    ICRP, International Commission on Radiological Protection. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs - threshold doses for tissue reactions in a radiation protection context. ICRP publication 118. Ann ICRP. 2012;41:1–322.Google Scholar
  55. 55.
    SEDENTEXCT. Deliverable 2.2: Completion of scatter dose measurements around CBCTs and recommendations for protective measures and positioning of CBCT units in dental offices. 2010. Available on http://www.sedentexct.eu/system/files/SEDENTEXCT%20D2.2%20v1%20FINAL_0.pdf. Accessed 18 Mar 2018.
  56. 56.
    Gijbels F, Jacobs R, Debaveye D, Bogaerts R, Verlinden S, Sanderink G. Dosimetry of digital panoramic imaging. Part II: occupational exposure. Dentomaxillofac Radiol. 2005;34:150–3.CrossRefGoogle Scholar
  57. 57.
    Sutton DG, Williams JR. Radiation shielding for diagnostic X-rays: report of a Joint BIR/IPEM Working Party. London: British Institute of Radiology; 2000.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ruben Pauwels
    • 1
    • 2
  1. 1.Mechanical Engineering DepartmentKU LeuvenLeuvenBelgium
  2. 2.Department of Radiology, Faculty of DentistryChulalongkorn UniversityBangkokThailand

Personalised recommendations