Advertisement

Micro-CT Applications in TMJ Research

  • Kaan Orhan
  • Mert Ocak
  • Burak Bilecenoglu
Chapter

Abstract

From a technical point of view, micro-computed tomography (micro-CT) indeed is a cone beam computed tomography technique which utilizes geometrically cone-shaped beams for reconstruction and back-projection processes. Having a voxel size volumetrically almost one million times smaller than that of computed tomography (CT), micro-CT’s voxel size ranges between 1 and 50 μm. Thanks to this tiny voxel size, micro-CTs provide outstanding cross-sectional resolutions. Micro-CT is currently being utilized in various fields such as biomedical research, materials science, pharmaceutical medicine development and manufacturing, composites, dental research, electronic components, geology, zoology, botany, construction materials, and paper production. Micro-computed tomography makes direct examination of mineralized tissues possible such as the teeth and bones, ceramics, polymers, and biomaterials. Reviewing recent studies conducted within the field of dentistry, it was observed that numerous studies related to concepts such as evaluation of root canal morphology, evaluation of root canal shaping, evaluation of root canal sealing, examination of residual obturation material after root canal retreatment, assessment of craniofacial bone development, and measurement of enamel thickness could be found in literature.

In addition to all these, micro-computed tomography is also being utilized as a nondestructive, rapid, and reliable method for analyses of micro-architecture of cortical and trabecular bones. Parameters such as trabecular thickness (Tb.Th), trabeculation number (Tb.N), trabecular separation (Tb.Sp), bone volume (BV), total tissue volume (TV), trabecular bone ratio (BV/TV), structural model index (SMI) that demonstrates numeric features of trabeculation in 3D, trabecular bone junctions, number of trabecular nodes per each tissue volume (N.Nd/TV), and bone density determined with respect to hydroxyapatite amount can be calculated this way.

Taking advantage of all these benefits provided by micro-computed tomography, various studies might be conducted in order to shed light on clinical research regarding TMJ. High-quality images of joint components can be attained without deteriorating tissue integrity; these images can be reconstructed in 3D, and microstructural analysis of the joint can thus be performed.

Keywords

Temporomandibular joint Micro-CT 3D reconstruction 3D analyses 

Notes

Acknowledgments

The authors would like to thank Dr. Umut Aksoy for the preparation of micro-computed tomography and TMJ bone histopathology section and providing histopathology and corresponding rat mandibular micro-CT image.

All specimens in this chapter were scanned with Skyscan 1275 (Skyscan, Kontich, Belgium) which were taken from the Ankara University Research Fund (Project No:17A0234001).

References

  1. 1.
    Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three- dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3–11.CrossRefGoogle Scholar
  2. 2.
    Kuhn J, Goldstein S, Feldkamp L, Goulet R, Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8(6):833–42.CrossRefGoogle Scholar
  3. 3.
    Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, Oest M, Phillips J, Porter BD, Robertson G, Taylor WR. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag. 2003;22(5):77–83.CrossRefGoogle Scholar
  4. 4.
    Guldberg RE, Lin AS, Coleman R, Robertson G, Duvall C. Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res C Embryo Today. 2004;72(3):250–9.CrossRefGoogle Scholar
  5. 5.
    Rhodes JS, Ford TR, Lynch JA, Liepins PJ, Curtis RV. Micro-computed tomography: a new tool for experimental endodontology. Int Endod J. 1999;32(3):165–70.CrossRefGoogle Scholar
  6. 6.
    Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Practice. 1999;12:15.Google Scholar
  7. 7.
    Araki K, Maki K, Seki K, Sakamaki K, Harata Y, Sakaino R, et al. Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay™): system configuration and physical properties. Dentomaxillofac Radiol. 2014;33(1):51–9.CrossRefGoogle Scholar
  8. 8.
    Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IB. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8(9):1558–64.CrossRefGoogle Scholar
  9. 9.
    Orhan K, Ocak M. Use of micro-computerized tomography (micro-CT) in dentistry (Diş hekimliğinde mikro-bilgisayarlı tomografi (Mikro-BT) kullanımı) (Turkish). In: Yakıncı ME, Polat S, editors. Ulusal mikro-ct yaz okulu ders notları. Ankara: 72 Tasarım Ltd; 2016.Google Scholar
  10. 10.
    Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol. 2014;37(1):10–7.CrossRefGoogle Scholar
  11. 11.
    Weber AL. History of head and neck radiology: past, present, and future 1. Radiology. 2001;218(1):15–24.CrossRefGoogle Scholar
  12. 12.
    Ho J-T, Wu J, Huang H-L, Chen MY, Fuh L-J, Hsu J-T. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones. Biomed Eng Online. 2013;12(1):115.CrossRefGoogle Scholar
  13. 13.
    Ordinola-Zapata R, Bramante C, Versiani M, Moldauer B, Topham G, Gutmann J, et al. Comparative accuracy of the Clearing Technique, CBCT and Micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J. 2017;50(1):90–6.CrossRefGoogle Scholar
  14. 14.
    Parsa A, Ibrahim N, Hassan B, Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res. 2015;26(1):e1–7.CrossRefGoogle Scholar
  15. 15.
    Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R. A comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dentomaxillofac Radiol. 2013;42(8):20130145.CrossRefGoogle Scholar
  16. 16.
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor – a new parameter for simple quantification of bone microarchitecture. Bone. 1992;13:327–30.CrossRefGoogle Scholar
  17. 17.
    Parfitt AM. Bone histomorphometry: proposed system for standardization of nomenclature, symbols, and units. Calcif Tissue Int. 1988;42:284–6.CrossRefGoogle Scholar
  18. 18.
    Currey JD. The many adaptations of bone. J Biomech. 2003;36:1487–95.CrossRefGoogle Scholar
  19. 19.
    Odgaard A, Gundersen HJ. Quantification of connectivity cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14:173–82.CrossRefGoogle Scholar
  20. 20.
    Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin. 1997;1:15–23.CrossRefGoogle Scholar
  21. 21.
    Southard TE, Southard KA, Krizan KE, Hillis SL, Haller JW, Keller J, et al. Mandibular bone density and fractal dimension in rabbits with induced osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:244–9.CrossRefGoogle Scholar
  22. 22.
    Tosoni GM, Lurie AG, Cowan AE, Burleson JA. Pixel intensity band fractal analyses: detecting osteoporosis in perimenopausal and postmenopausal women by using digital panoramic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:235–41.CrossRefGoogle Scholar
  23. 23.
    Mulder L, Koolstra JH, Weijs WA, van Eijden TM. Architecture and mineralization of developing trabecular bone in the pig mandibular condyle. Anat Rec A Discov Mol Cell Evol Biol. 2005;285(1):659–66.CrossRefGoogle Scholar
  24. 24.
    Kim JE, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(6):762–70.CrossRefGoogle Scholar
  25. 25.
    Zhang YT, Niu J, Wang Z, Liu S, Wu J, Yu B. Repair of osteochondral defects in a rabbit model using bilayer Poly(Lactide-co-Glycolide) scaffolds loaded with autologous platelet-rich plasma. Med Sci Monit. 2017;23:5189–201.CrossRefGoogle Scholar
  26. 26.
    Kaur H, Uludağ H, Dederich DN, El-Bialy T. Effect of increasing low-intensity pulsed ultrasound and a functional appliance on the mandibular condyle in growing rats. J Ultrasound Med. 2017;36(1):109–20.CrossRefGoogle Scholar
  27. 27.
    Kün-Darbois JD, Libouban H, Chappard D. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis. Bone. 2015;77:75–82.  https://doi.org/10.1016/j.bone.2015.03.023.CrossRefGoogle Scholar
  28. 28.
    Gomes LR, Gomes MR, Jung B, Paniagua B, Ruellas AC, Gonçalves JR, et al. Diagnostic index of three-dimensional osteoarthritic changes in temporomandibular joint condylar morphology. J Med Imaging. 2015;2(3):034501.CrossRefGoogle Scholar
  29. 29.
    Cevidanes LH, Bailey L, Tucker G Jr, Styner M, Mol A, Phillips C, et al. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol. 2005;34(6):369–75.CrossRefGoogle Scholar
  30. 30.
    Cevidanes LH, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JC. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofac Orthop. 2009;136(1):94–9.CrossRefGoogle Scholar
  31. 31.
    Cevidanes LH, L’Tanya JB, Tucker SF, Styner MA, Mol A, Phillips CL, et al. Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofac Orthop. 2007;131(1):44–50.CrossRefGoogle Scholar
  32. 32.
    De Clerck H, Nguyen T, De Paula LK, Cevidanes L. Three-dimensional assessment of mandibular and glenoid fossa changes after bone-anchored class III intermaxillary traction. Am J Orthod Dentofac Orthop. 2012;142(1):25–31.CrossRefGoogle Scholar
  33. 33.
    Goncalves JR, Wolford LM, Cassano DS, Da Porciuncula G, Paniagua B, Cevidanes LH. Temporomandibular joint condylar changes following maxillomandibular advancement and articular disc repositioning. J Oral Maxillofac Surg. 2013;71(10):1759.e1–e15.CrossRefGoogle Scholar
  34. 34.
    Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofac Orthop. 2006;129(5):611–8.CrossRefGoogle Scholar
  35. 35.
    Khan I, El-Kadı A, El-Bialy T. Effects of growth hormone and ultrasound on mandibular growth in rats: microCT and toxicity analyses. Arch Oral Biol. 2013;58(9):1217–24.CrossRefGoogle Scholar
  36. 36.
    Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2003;3(3):131–9.Google Scholar
  37. 37.
    Allen MR, Burr DB. Techniques in histomorphometry. In: Basic and applied bone biology. London: Academic Press; 2014. p. 131–48.CrossRefGoogle Scholar
  38. 38.
    Aaron JE, Shore PA. Bone histomorphometry. In: Handbook of histology methods for bone and cartilage. New York: Humana; 2003. p. 331–51.Google Scholar
  39. 39.
    Erben RG, Glösmann M. Histomorphometry in rodents. In: Bone research protocols. New York: Humana; 2012. p. 279–303.CrossRefGoogle Scholar
  40. 40.
    Vandeweghe S, Coelho PG, Vanhove C, Wennerberg A, Jimbo R. Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: a comparison with histomorphometry. J Biomed Mater Res B Appl Biomater. 2013;101(7):1259–66.CrossRefGoogle Scholar
  41. 41.
    Vedi S, Compston J. Bone histomorphometry. In: Bone research protocols. New York: Humana; 2003. p. 283–98.CrossRefGoogle Scholar
  42. 42.
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J Bone Miner Res. 2010;25(7):1468–86.CrossRefGoogle Scholar
  43. 43.
    Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M. Comparison insight bone measurements by histomorphometry and μCT. J Bone Miner Res. 2005;20(7):1177–84.CrossRefGoogle Scholar
  44. 44.
    Bonnet N, Laroche N, Vico L, Dolleans E, Courteix D, Benhamou CL. Assessment of trabecular bone microarchitecture by two different x-ray microcomputed tomographs: a comparative study of the rat distal tibia using Skyscan and Scanco devices. Med Phys. 2009;36(4):1286–97.CrossRefGoogle Scholar
  45. 45.
    Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Rüegsegger P. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23(1):59–66.CrossRefGoogle Scholar
  46. 46.
    Matthew AR, Burr DB. Techniques in histomorphometry. In: Basic and applied bone biology. New York: Elsevier; 2014. p. 131–48.Google Scholar
  47. 47.
    Swain MV, Xue J. State of the art of micro-CT applications in dental research. Int J Oral Sci. 2009;1(4):177–88.CrossRefGoogle Scholar
  48. 48.
    Compston JE. Bone density: BMC, BMD, or corrected BMD? Bone. 1995;16:5–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kaan Orhan
    • 1
  • Mert Ocak
    • 2
  • Burak Bilecenoglu
    • 3
  1. 1.Department of Dentomaxillofacial RadiologyAnkara University, Faculty of DentistryAnkaraTurkey
  2. 2.Department of AnatomyHacettepe University, Faculty of MedicineAnkaraTurkey
  3. 3.Department of AnatomyAnkara University, Faculty of DentistryAnkaraTurkey

Personalised recommendations