Advertisement

Using Ecological Modelling Tools to Inform Policy Makers of Potential Changes in Crop Distribution: An Example with Cacao Crops in Latin America

  • Juan Fernandez-Manjarrés
Chapter

Abstract

One consequence of climate change that is becoming increasingly clear, is the shift in species distribution of certain wild species because of climate change (Parmesan in Annu Rev Ecol Evol Syst 37:637–669, 2006). However, assigning climate effects to distributional shifts has not always been straightforward because of other factors.

References

  1. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Gusan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151CrossRefGoogle Scholar
  2. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57CrossRefGoogle Scholar
  3. Fithian W, Elith J, Hastie T, Keith DA (2015) Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol 6(4):424–438CrossRefGoogle Scholar
  4. Holzkämper A (2017) Adapting agricultural production systems to climate change—what’s the use of models? Agriculture 7(10):86CrossRefGoogle Scholar
  5. Jensen RA, Wisz MS, Madsen J (2008) Prioritizing refuge sites for migratory geese to alleviate conflicts with agriculture. Biol Conserv 141(7):1806–1818CrossRefGoogle Scholar
  6. Jiménez-Valverde A (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr 21(4):498–507CrossRefGoogle Scholar
  7. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  8. Liu C, Newell G, White M (2016) On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evol 6(1):337–348CrossRefGoogle Scholar
  9. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37(1):637–669CrossRefGoogle Scholar
  10. Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116(6):849–864CrossRefGoogle Scholar
  11. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175CrossRefGoogle Scholar
  12. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  13. Phillips SJ, Dudík M, Schapire RE (2018) Maxent software for modeling species niches and distributions (Version 3.4.1)Google Scholar
  14. Quiroga S, Suárez C, Solís JD (2015) Exploring coffee farmers’ awareness about climate change and water needs: Smallholders’ perceptions of adaptive capacity. Environ Sci Policy 45:53–66CrossRefGoogle Scholar
  15. Renner IW, Elith J, Baddeley A, Fithian W, Hastie T, Phillips SJ, Popovic G, Warton DI (2015) Point process models for presence-only analysis. Methods Ecol Evol 6(4):366–379CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université Paris-Sud/SaclayOrsayFrance

Personalised recommendations