Spinal Cord Tumors pp 109-125 | Cite as
Intraoperative Neurophysiology during Surgery for Spinal Cord Tumors
Chapter
First Online:
Abstract
Intraoperative neurophysiological monitoring might allow surgical tumor resection with functional guidance and real-time feed-back. The available methods can be divided in monitoring methods to continuously assess the functional integrity and mapping methods to identify eloquent tissue. In the following chapter we describe indication, set-up, interpretation and limitations of available neurophysiological methods in spinal cord tumor surgery.
Keywords
Intraoperative Neurophysiological Monitoring Functional Neurophysiological Guidance Functional Integrity Spinal Cord Pathways Mapping Motor Evoked Potentials Sensory Evoked Potentials D-waveReferences
- 1.Macdonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291–316. https://doi.org/10.1016/j.clinph.2013.07.025.PubMedCrossRefGoogle Scholar
- 2.Deletis V. Intraoperative neurophysiology of the corticospinal tract of the spinal cord. In: Functional Neuroscience: Evoked Potentials and Related Techniques. ( Suppl. To Clinical NeurophysiologyVol 59) (Eds. C.Barber, S. Tsuji, S. Tobimatsu, T. Uozumi, N. Akamatsu, A.Eisen) 2006, pp.105-109.Google Scholar
- 3.Scibilia A, Terranova C, Rizzo V, Raffa G, Morelli A, Esposito F, Mallamace R, Buda G, Conti A, Quartarone A, Germano A. Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: sirens or indispensable tools? Neurosurg Focus. 2016;41(2):E18. https://doi.org/10.3171/2016.5.focus16141.PubMedCrossRefGoogle Scholar
- 4.Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58(6):1129–43.; discussion 1129-1143. https://doi.org/10.1227/01.neu.0000215948.97195.58.PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Sala F, Tramontano V, Squintani G, Arcaro C, Tot E, Pinna G, Meglio M. Neurophysiology of complex spinal cord untethering. J Clin Neurophysiol. 2014;31(4):326–36. https://doi.org/10.1097/wnp.0000000000000115.PubMedCrossRefGoogle Scholar
- 6.Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode: part I-surgical technique. Neurosurgery. 2009;65(3):511–28.; discussion 528-519. https://doi.org/10.1227/01.neu.0000350879.02128.80.PubMedCrossRefGoogle Scholar
- 7.Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, part II: outcome analysis and preoperative profiling. Neurosurgery. 2010;66(2):253–72.; discussion 272-253. https://doi.org/10.1227/01.neu.0000363598.81101.7b.PubMedCrossRefGoogle Scholar
- 8.Pang D, Zovickian J, Wong ST, Hou YJ, Moes GS. Surgical treatment of complex spinal cord lipomas. Childs Nerv Syst. 2013;29(9):1485–513. https://doi.org/10.1007/s00381-013-2187-4.PubMedCrossRefGoogle Scholar
- 9.Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ. Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg. 2000;93(2 Suppl):183–93.Google Scholar
- 10.Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998;4(5):e1.PubMedPubMedCentralGoogle Scholar
- 11.Siller S, Szelenyi A, Herlitz L, Tonn JC, Zausinger S. Spinal cord hemangioblastomas: significance of intraoperative neurophysiological monitoring for resection and long-term outcome. J Neurosurg Spine. 2017;26(4):483–93. https://doi.org/10.3171/2016.8.spine16595.PubMedCrossRefGoogle Scholar
- 12.Kothbauer K, Deletis V, Epstein FJ. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg. 1997;26(5):247–54.CrossRefGoogle Scholar
- 13.Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64. https://doi.org/10.1016/j.clinph.2007.09.135.PubMedCrossRefGoogle Scholar
- 14.Sala F, Kothbaurer K. Intraoperative neurophysiological monitoring during surgery for intramedullary spinal cord tumors. In: Nuwer MR (ed) Intraoperative monitoring of neural function. Elsevier. 2008; pp. 632–650.Google Scholar
- 15.Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery. 1997;40(1):88–92. discussion 92-83PubMedGoogle Scholar
- 16.Deletis V, Bueno De Camargo A. Interventional neurophysiological mapping during spinal cord procedures. Stereotact Funct Neurosurg. 2001;77(1–4):25–8.PubMedCrossRefGoogle Scholar
- 17.Yanni DS, Ulkatan S, Deletis V, Barrenechea IJ, Sen C, Perin NI. Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. J Neurosurg Spine. 2010;12(6):623–8. https://doi.org/10.3171/2010.1.spine09112.PubMedCrossRefGoogle Scholar
- 18.Nair D, Kumaraswamy VM, Braver D, Kilbride RD, Borges LF, Simon MV. Dorsal column mapping via phase reversal method: the refined technique and clinical applications. Neurosurgery. 2014;74(4):437–46.; discussion 446. https://doi.org/10.1227/neu.0000000000000287.PubMedCrossRefGoogle Scholar
- 19.Quinones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery. 2002;51(5):1199–206. discussion 1206-1197PubMedCrossRefGoogle Scholar
- 20.Deletis V. Intraoperative neurophysiology of the corticospinal tract of the spinal cord. In: Barber C, Tsuji S, Tobimatsu S, Uozumi T, Akamatsu N, Eisen A, editors. Functional neuroscience: evoked potentials and related techniques, (supplements to Clinical Neurophysiology, vol 59). Amsterdam: Elsevier; 2006. p. 105–9.Google Scholar
- 21.Gandhi R, Curtis CM, Cohen-Gadol AA. High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor. J Neurosurg Spine. 2015;22(2):205–10. https://doi.org/10.3171/2014.10.spine1474.PubMedCrossRefGoogle Scholar
- 22.Duffau H, Lopes M, Sichez JP, Bitar A, Capelle L. A new device for electrical stimulation mapping of the brainstem and spinal cord. Minim Invasive Neurosurg. 2003;46(1):61–4. https://doi.org/10.1055/s-2003-37961.PubMedCrossRefGoogle Scholar
- 23.Duffau H, Capelle L, Sichez J. Direct spinal cord electrical stimulations during surgery of intramedullary tumoral and vascular lesions. Stereotact Funct Neurosurg. 1998;71(4):180–9.PubMedCrossRefGoogle Scholar
- 24.Barzilai O, Lidar Z, Constantini S, Salame K, Bitan-Talmor Y, Korn A. Continuous mapping of the corticospinal tracts in intramedullary spinal cord tumor surgery using an electrified ultrasonic aspirator. J Neurosurg Spine. 2017;27(2):161–8. https://doi.org/10.3171/2016.12.spine16985.PubMedCrossRefGoogle Scholar
- 25.Deletis V, Kothbauer KF, Sala F, Seidel K. Letter to the Editor: Electrical activity in limb muscles after spinal cord stimulation is not specific for the corticospinal tract. J Neurosurg Spine. 2016;26(2):267–9. https://doi.org/10.3171/2016.6.spine16591.PubMedCrossRefGoogle Scholar
- 26.Deletis V, Seidel K, Sala F, Raabe A, Chudy D, Beck J, Kothbauer KF. Intraoperative identification of the corticospinal tract and dorsal column of the spinal cord by electrical stimulation. J Neurol Neurosurg Psychiatry. 2018; https://doi.org/10.1136/jnnp-2017-317172.CrossRefGoogle Scholar
- 27.Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol. 2003;20(2):122–8.PubMedCrossRefGoogle Scholar
- 28.Raynor BL, Bright JD, Lenke LG, Rahman RK, Bridwell KH, Riew KD, Buchowski JM, Luhmann SJ, Padberg AM. Significant change or loss of intraoperative monitoring data: a 25-year experience in 12,375 spinal surgeries. Spine. 2013;38(2):E101–8. https://doi.org/10.1097/BRS.0b013e31827aafb9.PubMedCrossRefGoogle Scholar
- 29.Plata Bello J, Perez-Lorensu PJ, Roldan-Delgado H, Brage L, Rocha V, Hernandez-Hernandez V, Doniz A, Garcia-Marin V. Role of multimodal intraoperative neurophysiological monitoring during positioning of patient prior to cervical spine surgery. Clin Neurophysiol. 2015;126(6):1264–70. https://doi.org/10.1016/j.clinph.2014.09.020.PubMedCrossRefGoogle Scholar
- 30.Beck J, Ulrich CT, Fung C, Fichtner J, Seidel K, Fiechter M, Hsieh K, Murek M, Bervini D, Meier N, Mono ML, Mordasini P, Hewer E, Z'Graggen WJ, Gralla J, Raabe A. Diskogenic microspurs as a major cause of intractable spontaneous intracranial hypotension. Neurology. 2016;87(12):1220–6. https://doi.org/10.1212/wnl.0000000000003122.PubMedCrossRefGoogle Scholar
- 31.Ghadirpour R, Nasi D, Iaccarino C, Giraldi D, Sabadini R, Motti L, Sala F, Servadei F. Intraoperative neurophysiological monitoring for intradural extramedullary tumors: why not? Clin Neurol Neurosurg. 2015;130:140–9. https://doi.org/10.1016/j.clineuro.2015.01.007.PubMedCrossRefGoogle Scholar
- 32.Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H. Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders. Neurosurgery. 1992;30(1):72–5.PubMedCrossRefGoogle Scholar
- 33.Wostrack M, Shiban E, Obermueller T, Gempt J, Meyer B, Ringel F. Conus medullaris and cauda equina tumors: clinical presentation, prognosis, and outcome after surgical treatment: clinical article. J Neurosurg Spine. 2014;20(3):335–43. https://doi.org/10.3171/2013.12.spine13668.PubMedCrossRefGoogle Scholar
- 34.Kothbauer KF, Deletis V. Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst. 2010;26(2):247–53. https://doi.org/10.1007/s00381-009-1020-6.PubMedCrossRefGoogle Scholar
- 35.Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst. 2010;26(4):473–90. https://doi.org/10.1007/s00381-009-1081-6.PubMedCrossRefGoogle Scholar
- 36.Sala F, Barone G, Tramontano V, Gallo P, Ghimenton C. Retained medullary cord confirmed by intraoperative neurophysiological mapping. Childs Nerv Syst. 2014;30(7):1287–91. https://doi.org/10.1007/s00381-014-2372-0.PubMedCrossRefGoogle Scholar
- 37.Deletis V. Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol. 1993;63:201–14.PubMedGoogle Scholar
- 38.Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol. 2001;112(3):445–52.PubMedCrossRefGoogle Scholar
- 39.Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.PubMedCrossRefGoogle Scholar
- 40.Kothbauer KF. The Interpretation of Muscle Motor Evoked Potentials for Spinal Cord Monitoring. J Clin Neurophysiol. 2017;34(1):32–7. https://doi.org/10.1097/wnp.0000000000000314.PubMedCrossRefGoogle Scholar
- 41.Deletis V. Intraoperative neurophysiological monitoring. In: McLone DG, Marlin AE (eds) Pediatric neurosurgery: surgery of the developing nervous system. 4th edn. W.B.Saunders Philadelphia; 2001; pp 1204–1213.Google Scholar
- 42.Macdonald DB, Al Zayed Z, Al Saddigi A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries. Eur Spine J. 2007;16(Suppl 2):S171–87. https://doi.org/10.1007/s00586-007-0426-7.PubMedCrossRefGoogle Scholar
- 43.Shils JL, Arle JE. Intraoperative neurophysiologic methods for spinal cord stimulator placement under general anesthesia. Neuromodulation. 2012;15(6):560–71.; discussion 571-562. https://doi.org/10.1111/j.1525-1403.2012.00460.x.PubMedCrossRefGoogle Scholar
- 44.Huang JC, Deletis V, Vodusek DB, Abbott R. Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery. 1997;41(2):411–5.PubMedCrossRefGoogle Scholar
- 45.Skinner SA, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 2014;31(4):313–22. https://doi.org/10.1097/wnp.0000000000000054.CrossRefGoogle Scholar
- 46.Rodi Z, Vodusek DB. Intraoperative monitoring of the bulbocavernosus reflex: the method and its problems. Clin Neurophysiol. 2001;112(5):879–83.PubMedCrossRefGoogle Scholar
- 47.Kothbauer K, Schmid UD, Seiler RW, Eisner W. Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery. 1994;34(4):702–7. discussion 707PubMedGoogle Scholar
- 48.Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst. 2013;29(9):1611–24. https://doi.org/10.1007/s00381-013-2188-3.PubMedCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019