Rehabilitation of Patients with Primary Intradural Tumors of the Spinal Cord

  • Philippines Cabahug
  • Alba Azola
  • R. Samuel MayerEmail author


This chapter will approach rehabilitation of patients with spinal tumors from the perspective of the World Health Organization’s International Classification of Function. Tumor pathology guides clinicians in prognostication. Impairments involve virtually every organ system in the body, and the rehab physician must manage and ameliorate these to enhance outcomes of the rehab program, and minimize secondary complications. The rehabilitation program must establish achievable and measurable goals for mobility and activities of daily living. Ultimately, the aim of any rehabilitation program is to enhance patient participation in society, and enable the individual to achieve their goals of maximizing their independence in home life, vocational and recreational activities.


Spinal cord injury Motor deficits Sensory deficits Spasticity pain Neurogenic bowel Neurogenic bladder Sexual dysfunction Skin integrity Psychosocial impact 


  1. 1.
    Karikari IO, Nimjee SM, Hodges TR, Cutrell E, Hughes BD, Powers CJ, Mehta AI, Hardin C, Bagley CA, Isaacs RE, Haglund MM, Friedman AH. Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single-center experience with 102 patients. Neurosurgery 76 Suppl 1:S4-13; discussion S13. 2015; Scholar
  2. 2.
    Raj VS, Lofton L. Rehabilitation and treatment of spinal cord tumors. J Spinal Cord Med. 2013;36(1):4–11. Scholar
  3. 3.
    Stein BM, McCormick PC. Intramedullary neoplasms and vascular malformations. Clin Neurosurg. 1992;39:361–87.PubMedGoogle Scholar
  4. 4.
    McKinley W. Rehabilitation of patients with spinal cord dysfunction in the cancer setting. In: Stubblefield M, O'Dell M, editors. Cancer rehabilitation principles and practice. New York: Demos Medical Publishing; 2009. p. 533–50.Google Scholar
  5. 5.
    Campello C, Le Floch A, Parker F. Neuroepithelial intramedullary spinal cord tumors in adults: study of 70 cases. Paper presented at the American Academy of Neurology annual meeting. WA: Seattle; 2009.Google Scholar
  6. 6.
    Schellinger KA, Propp JM, Villano JL, McCarthy BJ. Descriptive epidemiology of primary spinal cord tumors. J Neuro-Oncol. 2008;87(2):173–9. Scholar
  7. 7.
    Mechtler LL, Nandigam K. Spinal cord tumors: new views and future directions. Neurol Clin. 2013;31(1):241–68. Scholar
  8. 8.
    Milano MT, Johnson MD, Sul J, Mohile NA, Korones DN, Okunieff P, Walter KA. Primary spinal cord glioma: a surveillance, epidemiology, and end results database study. J Neuro-Oncol. 2010;98(1):83–92. Scholar
  9. 9.
    Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G. Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery. 2005;56(5):972–81. discussion 972-981Google Scholar
  10. 10.
    Tobin MK, Geraghty JR, Engelhard HH, Linninger AA, Mehta AI. Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus. 2015;39(2):E14. Scholar
  11. 11.
    Lonser RR, Weil RJ, Wanebo JE, Devroom HL, Oldfield EH. Surgical management of spinal cord hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg. 2003;98(1):106–16. Scholar
  12. 12.
    Lee DK, Choe WJ, Chung CK, Kim HJ. Spinal cord hemangioblastoma: surgical strategy and clinical outcome. J Neuro-Oncol. 2003;61(1):27–34.CrossRefGoogle Scholar
  13. 13.
    Pan J, Jabarkheel R, Huang Y, Ho A, Chang SD. Stereotactic radiosurgery for central nervous system hemangioblastoma: systematic review and meta-analysis. J Neuro-Oncol. 2018;137(1):11–22. Scholar
  14. 14.
    Gerszten PC, Burton SA, Ozhasoglu C, McCue KJ, Quinn AE. Radiosurgery for benign intradural spinal tumors. Neurosurgery. 2008;62(4):887–95.; discussion 895-886. Scholar
  15. 15.
    Abul-Kasim K, Thurnher MM, McKeever P, Sundgren PC. Intradural spinal tumors: current classification and MRI features. Neuroradiology. 2008;50(4):301–14. Scholar
  16. 16.
    Davies S, Gregson B, Mitchell P. Spinal meningioma: relationship between degree of cord compression and outcome. Br J Neurosurg. 2017;31(2):209–11. Scholar
  17. 17.
    Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord. 2005;43(10):577–86. Scholar
  18. 18.
    Engelhard HH, Villano JL, Porter KR, Stewart AK, Barua M, Barker FG, Newton HB. Clinical presentation, histology, and treatment in 430 patients with primary tumors of the spinal cord, spinal meninges, or cauda equina. J Neurosurg Spine. 2010;13(1):67–77. Scholar
  19. 19.
    Hagen EM, Rekand T. Management of Neuropathic Pain Associated with spinal cord injury. Pain Ther. 2015;4(1):51–65. Scholar
  20. 20.
    Benevento BT, Sipski ML. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Phys Ther. 2002;82(6):601–12.PubMedGoogle Scholar
  21. 21.
    Samson G, Cardenas DD. Neurogenic bladder in spinal cord injury. Phys Med Rehabil Clin N Am. 2007;18(2):255–74., vi. Scholar
  22. 22.
    Brackett NL, Lynne CM, Ibrahim E, Ohl DA, Sonksen J. Treatment of infertility in men with spinal cord injury. Nat Rev Urol. 2010;7(3):162–72. Scholar
  23. 23.
    Kreuter M, Taft C, Siosteen A, Biering-Sorensen F. Women's sexual functioning and sex life after spinal cord injury. Spinal Cord. 2011;49(1):154–60. Scholar
  24. 24.
    Verschueren JH, Post MW, de Groot S, van der Woude LH, van Asbeck FW, Rol M. Occurrence and predictors of pressure ulcers during primary in-patient spinal cord injury rehabilitation. Spinal Cord. 2011;49(1):106–12. Scholar
  25. 25.
    Krassioukov A, Warburton DE, Teasell R, Eng JJ, Spinal Cord Injury Rehabilitation Evidence Research T. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009;90(4):682–95. Scholar
  26. 26.
    Post MW, van Leeuwen CM. Psychosocial issues in spinal cord injury: a review. Spinal Cord. 2012;50(5):382–9. Scholar
  27. 27.
    National SCI Statistical Center (2017) Spinal cord injury facts and figures at a glance. National Spinal Cord Injury Statistical Center, University of Alabama. Accessed July 5 2018.
  28. 28.
    New PW, Marshall R, Stubblefield MD, Scivoletto G. Rehabilitation of people with spinal cord damage due to tumor: literature review, international survey and practical recommendations for optimizing their rehabilitation. J Spinal Cord Med. 2017;40(2):213–21. Scholar
  29. 29.
    McKinley WO, Conti-Wyneken AR, Vokac CW, Cifu DX. Rehabilitative functional outcome of patients with neoplastic spinal cord compressions. Arch Phys Med Rehabil. 1996;77(9):892–5.CrossRefGoogle Scholar
  30. 30.
    McKinley WO, Huang ME, Brunsvold KT. Neoplastic versus traumatic spinal cord injury: an outcome comparison after inpatient rehabilitation. Arch Phys Med Rehabil. 1999;80(10):1253–7.CrossRefGoogle Scholar
  31. 31.
    McKinley WO, Huang ME, Tewksbury MA. Neoplastic vs. traumatic spinal cord injury: an inpatient rehabilitation comparison. Am J Phys Med Rehabil. 2000;79(2):138–44.CrossRefGoogle Scholar
  32. 32.
    Scivoletto G, Lapenna LM, Di Donna V, Laurenza L, Sterzi S, Foti C, Molinari M. Neoplastic myelopathies and traumatic spinal cord lesions: an Italian comparison of functional and neurological outcomes. Spinal Cord. 2011;49(7):799–805. Scholar
  33. 33.
    Fortin CD, Voth J, Jaglal SB, Craven BC. Inpatient rehabilitation outcomes in patients with malignant spinal cord compression compared to other non-traumatic spinal cord injury: a population based study. J Spinal Cord Med. 2015;38(6):754–64. Scholar
  34. 34.
    Tan M, New PW. Retrospective study of rehabilitation outcomes following spinal cord injury due to tumour. Spinal Cord. 2012;50(2):127–31. Scholar
  35. 35.
    Fattal C, Fabbro M, Gelis A, Bauchet L. Metastatic paraplegia and vital prognosis: perspectives and limitations for rehabilitation care. Part 1. Arch Phys Med Rehabil. 2011;92(1):125–33. Scholar
  36. 36.
    Parsch D, Mikut R, Abel R. Postacute management of patients with spinal cord injury due to metastatic tumour disease: survival and efficacy of rehabilitation. Spinal Cord. 2003;41(4):205–10. Scholar
  37. 37.
    Tan M, New P. Survival after rehabilitation for spinal cord injury due to tumor: a 12-year retrospective study. J Neuro-Oncol. 2011;104(1):233–8. Scholar
  38. 38.
    Murray PK. Functional outcome and survival in spinal cord injury secondary to neoplasia. Cancer. 1985;55(1):197–201.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Philippines Cabahug
    • 1
    • 2
  • Alba Azola
    • 1
  • R. Samuel Mayer
    • 1
    Email author
  1. 1.Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Kennedy-Krieger InstituteBaltimoreUSA

Personalised recommendations