Advertisement

Malignant Intramedullary Spinal Cord Tumors

  • Nir Shimony
  • Sara Hartnett
  • Brooks Osburn
  • Mari Groves
  • George I. JalloEmail author
Chapter

Abstract

Compared to their intracranial counterparts, spinal cord tumors are quite rare, accounting for less than 10% of all central nervous system (CNS) lesions. Intramedullary spinal cord tumors (IMSCTs) comprise 20–30% of all spinal cord tumors in adults and 4–10% of all tumors of the spinal cord in children. The most frequently encountered IMSCTs are gliomas. In adults, the most common pathology is ependymoma followed by astrocytoma, comprising 60% and 30% of intramedullary spinal cord tumors, respectively. Children demonstrate the opposite incidence of pathology with astrocytomas being the most common (60%) followed by ependymoma (30%), while embryonal tumors, such as primary neuroectodermal tumors as described by the prior World Health Organization (WHO) classification, represent 4%. There has also been observed a pattern based on the age of the child. Children younger than 2 years of age will more commonly have neuroblastomas, teratomas, or dermoid tumors. Children ages 2–5 years present with astrocytomas, gangliogliomas, and epidermoid tumors. Children 6–10 year of age have a mix of tumor types. Astrocytomas predominate in children >10 years of age. Astrocytomas comprise approximately 90% of all intramedullary tumors in patients >10 years of age and about 60% of adolescent intramedullary neoplasms. By around 30 years of age, ependymomas become slightly more common than astrocytomas and predominate in the middle decades of life. After the sixth decade of life, astrocytomas and ependymomas are encountered with fairly equal frequency. Other IMSCTs include gangliogliomas, lipomas, subependymomas, hemangioblastomas, dermoids, teratomas, central neurocytomas, oligodendrogliomas, and in extremely rare cases, intramedullary metastases. There is a slight predilection for such lesions in males. A propensity for the development of spinal cord astrocytomas exists in children with neurofibromatosis type 1 (NF1). There is an additional propensity for the development of spinal cord ependymomas in children with neurofibromatosis 2 (NF2). In this chapter we are focusing on the most common malignant spinal cord tumors, astrocytomas and ependymomas, their differential diagnosis, diagnostic features, management and disease course.

Keywords

Intramedullary Spinal Cord Tumor Glioma Ependymoma Astrocytoma 

References

  1. 1.
    Wong AP, Dahdaleh NS, Fessler RG, Melkonian SC, Lin Y, Smith ZA, Lam SK. Risk factors and long-term survival in adult patients with primary malignant spinal cord astrocytomas. J Neuro-Oncol. 2013;115(3):493–503.  https://doi.org/10.1007/s11060-013-1251-y.CrossRefGoogle Scholar
  2. 2.
    Wilson PE, Oleszek JL, Clayton GH. Pediatric spinal cord tumors and masses. J Spinal Cord Med. 2007;30(Suppl 1):S15–20.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Townsend N, Handler M, Fleitz J, Foreman N. Intramedullary spinal cord astrocytomas in children. Pediatr Blood Cancer. 2004;43(6):629–32.  https://doi.org/10.1002/pbc.20082.PubMedCrossRefGoogle Scholar
  4. 4.
    Rumana CS, Valadka AB. Radiation therapy and malignant degeneration of benign supratentorial gangliogliomas. Neurosurgery. 1998;42(5):1038–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, Kocak M, Dalton J, Zambetti GP, Ellison DW, Kun LE, Gajjar A, Gilbertson RJ, Fuller CE. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol. 2007;25(6):682–9.  https://doi.org/10.1200/JCO.2006.06.8213.PubMedCrossRefGoogle Scholar
  6. 6.
    Winograd E, Pencovich N, Yalon M, Soffer D, Beni-Adani L, Constantini S. Malignant transformation in pediatric spinal intramedullary tumors: case-based update. Childs Nerv Syst. 2012;28(10):1679–86.  https://doi.org/10.1007/s00381-012-1851-4.PubMedCrossRefGoogle Scholar
  7. 7.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.  https://doi.org/10.1056/NEJMoa0808710.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Takai K, Tanaka S, Sota T, Mukasa A, Komori T, Taniguchi M. Spinal Cord Astrocytoma with Isocitrate Dehydrogenase 1 Gene Mutation. World Neurosurg 108:991.e913-991.e916. 2017;  https://doi.org/10.1016/j.wneu.2017.08.142.PubMedCrossRefGoogle Scholar
  9. 9.
    Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, von Deimling A. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405.  https://doi.org/10.1007/s00401-011-0802-6.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee D, Cho YH, Kang SY, Yoon N, Sung CO, Suh YL. BRAF V600E mutations are frequent in dysembryoplastic neuroepithelial tumors and subependymal giant cell astrocytomas. J Surg Oncol. 2015;111(3):359–64.  https://doi.org/10.1002/jso.23822.PubMedCrossRefGoogle Scholar
  11. 11.
    Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2008;67(9):878–87.  https://doi.org/10.1097/NEN.0b013e3181845622.PubMedCrossRefGoogle Scholar
  12. 12.
    Jacob K, Albrecht S, Sollier C, Faury D, Sader E, Montpetit A, Serre D, Hauser P, Garami M, Bognar L, Hanzely Z, Montes JL, Atkinson J, Farmer JP, Bouffet E, Hawkins C, Tabori U, Jabado N. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br J Cancer. 2009;101(4):722–33.  https://doi.org/10.1038/sj.bjc.6605179.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H, Ahmadi R, Thieme B, Joos S, Radlwimmer B, Kulozik A, Pietsch T, Herold-Mende C, Gnekow A, Reifenberger G, Korshunov A, Scheurlen W, Omran H, Lichter P. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118(5):1739–49.  https://doi.org/10.1172/JCI33656.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Karsy M, Guan J, Cohen AL, Jensen RL, Colman H. New Molecular Considerations for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep. 2017;17(2):19.  https://doi.org/10.1007/s11910-017-0722-5.PubMedCrossRefGoogle Scholar
  15. 15.
    Shankar GM, Lelic N, Gill CM, Thorner AR, Van Hummelen P, Wisoff JH, Loeffler JS, Brastianos PK, Shin JH, Borges LF, Butler WE, Zagzag D, Brody RI, Duhaime AC, Taylor MD, Hawkins CE, Louis DN, Cahill DP, Curry WT, Meyerson M. BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol. 2016;131(1):147–50.  https://doi.org/10.1007/s00401-015-1492-2.PubMedCrossRefGoogle Scholar
  16. 16.
    Shankar GM, Francis JM, Rinne ML, Ramkissoon SH, Huang FW, Venteicher AS, Akama-Garren EH, Kang YJ, Lelic N, Kim JC, Brown LE, Charbonneau SK, Golby AJ, Sekhar Pedamallu C, Hoang MP, Sullivan RJ, Cherniack AD, Garraway LA, Stemmer-Rachamimov A, Reardon DA, Wen PY, Brastianos PK, Curry WT, Barker FG, Hahn WC, Nahed BV, Ligon KL, Louis DN, Cahill DP, Meyerson M. Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncol. 2015;1(5):662–7.  https://doi.org/10.1001/jamaoncol.2015.0917.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Segal D, Lidar Z, Corn A, Constantini S. Delay in diagnosis of primary intradural spinal cord tumors. Surg Neurol Int. 2012;3:52.  https://doi.org/10.4103/2152-7806.96075.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Grimm S, Chamberlain MC. Adult primary spinal cord tumors. Expert Rev Neurother. 2009;9(10):1487–95.  https://doi.org/10.1586/ern.09.101.PubMedCrossRefGoogle Scholar
  19. 19.
    McCormick PC, Torres R, Post KD, Stein BM. Intramedullary ependymoma of the spinal cord. J Neurosurg. 1990;72(4):523–32.  https://doi.org/10.3171/jns.1990.72.4.0523.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jallo GI, Freed D, Epstein F. Intramedullary spinal cord tumors in children. Childs Nerv Syst. 2003;19(9):641–9.  https://doi.org/10.1007/s00381-003-0820-3.PubMedCrossRefGoogle Scholar
  21. 21.
    Wilne S, Walker D. Spine and spinal cord tumours in children: a diagnostic and therapeutic challenge to healthcare systems. Arch Dis Child Educ Pract Ed. 2010;95(2):47–54.  https://doi.org/10.1136/adc.2008.143214.PubMedCrossRefGoogle Scholar
  22. 22.
    Seo HS, Kim JH, Lee DH, Lee YH, Suh SI, Kim SY, Na DG. Nonenhancing intramedullary astrocytomas and other MR imaging features: a retrospective study and systematic review. AJNR Am J Neuroradiol. 2010;31(3):498–503.  https://doi.org/10.3174/ajnr.A1864.PubMedCrossRefGoogle Scholar
  23. 23.
    Goy AM, Pinto RS, Raghavendra BN, Epstein FJ, Kricheff II. Intramedullary spinal cord tumors: MR imaging, with emphasis on associated cysts. Radiology. 1986;161(2):381–6.  https://doi.org/10.1148/radiology.161.2.3763905.PubMedCrossRefGoogle Scholar
  24. 24.
    Kahan H, Sklar EM, Post MJ, Bruce JH. MR characteristics of histopathologic subtypes of spinal ependymoma. AJNR Am J Neuroradiol. 1996;17(1):143–50.PubMedGoogle Scholar
  25. 25.
    Kobayashi K, Imagama S, Kato F, Kanemura T, Sato K, Kamiya M, Ando K, Ito K, Tsushima M, Matsumoto A, Morozumi M, Tanaka S, Machino M, Nishida Y, Ishiguro N. MRI characteristics of spinal ependymoma in WHO grade II: a review of 59 cases. Spine (Phila Pa 1976). 2017;  https://doi.org/10.1097/BRS.0000000000002496.PubMedCrossRefGoogle Scholar
  26. 26.
    Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20(6):1721–49.  https://doi.org/10.1148/radiographics.20.6.g00nv151721.PubMedCrossRefGoogle Scholar
  27. 27.
    Sun B, Wang C, Wang J, Liu A. MRI features of intramedullary spinal cord ependymomas. J Neuroimaging. 2003;13(4):346–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Do-Dai DD, Brooks MK, Goldkamp A, Erbay S, Bhadelia RA. Magnetic resonance imaging of intramedullary spinal cord lesions: a pictorial review. Curr Probl Diagn Radiol. 2010;39(4):160–85.  https://doi.org/10.1067/j.cpradiol.2009.05.004.PubMedCrossRefGoogle Scholar
  29. 29.
    Fine MJ, Kricheff II, Freed D, Epstein FJ. Spinal cord ependymomas: MR imaging features. Radiology. 1995;197(3):655–8.  https://doi.org/10.1148/radiology.197.3.7480734.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim DH, Kim JH, Choi SH, Sohn CH, Yun TJ, Kim CH, Chang KH. Differentiation between intramedullary spinal ependymoma and astrocytoma: comparative MRI analysis. Clin Radiol. 2014;69(1):29–35.  https://doi.org/10.1016/j.crad.2013.07.017.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao M, Shi B, Chen T, Zhang Y, Geng T, Qiao L, Zhang M, He L, Zuo H, Wang G. Axial MR diffusion tensor imaging and tractography in clinical diagnosed and pathology confirmed cervical spinal cord astrocytoma. J Neurol Sci. 2017;375:43–51.  https://doi.org/10.1016/j.jns.2017.01.044.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu X, Germin BI, Ekholm S. A case of cervical spinal cord glioblastoma diagnosed with MR diffusion tensor and perfusion imaging. J Neuroimaging. 2011;21(3):292–6.  https://doi.org/10.1111/j.1552-6569.2009.00459.x.PubMedCrossRefGoogle Scholar
  33. 33.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.  https://doi.org/10.1007/s00401-016-1545-1.CrossRefGoogle Scholar
  34. 34.
    Nagaishi M, Nobusawa S, Yokoo H, Sugiura Y, Tsuda K, Tanaka Y, Suzuki K, Hyodo A. Genetic mutations in high grade gliomas of the adult spinal cord. Brain Tumor Pathol. 2016;33(4):267–9.  https://doi.org/10.1007/s10014-016-0263-7.PubMedCrossRefGoogle Scholar
  35. 35.
    Xiao R, Abdullah KG, Miller JA, Lubelski D, Steinmetz MP, Shin JH, Krishnaney AA, Mroz TE, Benzel EC. Molecular and clinical prognostic factors for favorable outcome following surgical resection of adult intramedullary spinal cord astrocytomas. Clin Neurol Neurosurg. 2016;144:82–7.  https://doi.org/10.1016/j.clineuro.2016.03.009.PubMedCrossRefGoogle Scholar
  36. 36.
    Ellezam B, Theeler BJ, Walbert T, Mammoser AG, Horbinski C, Kleinschmidt-DeMasters BK, Perry A, Puduvalli V, Fuller GN, Bruner JM, Aldape KD. Low rate of R132H IDH1 mutation in infratentorial and spinal cord grade II and III diffuse gliomas. Acta Neuropathol. 2012;124(3):449–51.  https://doi.org/10.1007/s00401-012-1011-7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhang L, Chen LH, Wan H, Yang R, Wang Z, Feng J, Yang S, Jones S, Wang S, Zhou W, Zhu H, Killela PJ, Zhang J, Wu Z, Li G, Hao S, Wang Y, Webb JB, Friedman HS, Friedman AH, McLendon RE, He Y, Reitman ZJ, Bigner DD, Yan H. Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet. 2014;46(7):726–30.  https://doi.org/10.1038/ng.2995.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Konar SK, Bir SC, Maiti TK, Nanda A. A systematic review of overall survival in pediatric primary glioblastoma multiforme of the spinal cord. J Neurosurg Pediatr. 2017;19(2):239–48.  https://doi.org/10.3171/2016.8.PEDS1631.PubMedCrossRefGoogle Scholar
  39. 39.
    Vettermann FJ, Neumann JE, Suchorska B, Bartenstein P, Giese A, Dorostkar MM, Albert NL, Schüller U. K27M midline gliomas display malignant progression by imaging and histology. Neuropathol Appl Neurobiol. 2017;43(5):458–62.  https://doi.org/10.1111/nan.12371.PubMedCrossRefGoogle Scholar
  40. 40.
    Chiang JC, Ellison DW. Molecular pathology of paediatric central nervous system tumours. J Pathol. 2017;241(2):159–72.  https://doi.org/10.1002/path.4813.PubMedCrossRefGoogle Scholar
  41. 41.
    Pajtler KW, Mack SC, Ramaswamy V, Smith CA, Witt H, Smith A, Hansford JR, von Hoff K, Wright KD, Hwang E, Frappaz D, Kanemura Y, Massimino M, Faure-Conter C, Modena P, Tabori U, Warren KE, Holland EC, Ichimura K, Giangaspero F, Castel D, von Deimling A, Kool M, Dirks PB, Grundy RG, Foreman NK, Gajjar A, Korshunov A, Finlay J, Gilbertson RJ, Ellison DW, Aldape KD, Merchant TE, Bouffet E, Pfister SM, Taylor MD. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol. 2017;133(1):5–12.  https://doi.org/10.1007/s00401-016-1643-0.PubMedCrossRefGoogle Scholar
  42. 42.
    Hübner JM, Kool M, Pfister SM, Pajtler KW (2018) Epidemiology, molecular classification and WHO grading of ependymoma. J Neurosurg Sci 62 (1):46-50.  https://doi.org/10.23736/S0390-5616.17.04152-2.
  43. 43.
    Lee CH, Chung CK, Kim CH. Genetic differences on intracranial versus spinal cord ependymal tumors: a meta-analysis of genetic researches. Eur Spine J. 2016;25(12):3942–51.  https://doi.org/10.1007/s00586-016-4745-4.PubMedCrossRefGoogle Scholar
  44. 44.
    Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Birks DK, Handler MH, Foreman NK. Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol. 2010;20(3):560–70.  https://doi.org/10.1111/j.1750-3639.2009.00333.x.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mirone G, Cinalli G, Spennato P, Ruggiero C, Aliberti F. Hydrocephalus and spinal cord tumors: a review. Childs Nerv Syst. 2011;27(10):1741–9.  https://doi.org/10.1007/s00381-011-1543-5.PubMedCrossRefGoogle Scholar
  46. 46.
    Rifkinson-Mann S, Wisoff JH, Epstein F. The association of hydrocephalus with intramedullary spinal cord tumors: a series of 25 patients. Neurosurgery. 1990;27(5):749–54. discussion 754PubMedCrossRefGoogle Scholar
  47. 47.
    Gardner WJ, Spitler DK, Whitten C. Increased intracranial pressure caused by increased protein content in the cerebrospinal fluid; an explanation of papilledema in certain cases of small intracranial and intraspinal tumors, and in the Guillain-Barre syndrome. N Engl J Med. 1954;250(22):932–6.  https://doi.org/10.1056/NEJM195406032502202.PubMedCrossRefGoogle Scholar
  48. 48.
    Maksymowicz W, Czosnyka M, Koszewski W, Szymanska A, Traczewski W. The role of cerebrospinal compensatory parameters in the estimation of functioning of implanted shunt system in patients with communicating hydrocephalus (preliminary report). Acta Neurochir. 1989;101(3–4):112–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Morandi X, Amlashi SF, Riffaud L. A dynamic theory for hydrocephalus revealing benign intraspinal tumours: tumoural obstruction of the spinal subarachnoid space reduces total CSF compartment compliance. Med Hypotheses. 2006;67(1):79–81.  https://doi.org/10.1016/j.mehy.2006.01.005.PubMedCrossRefGoogle Scholar
  50. 50.
    Raksin PB, Alperin N, Sivaramakrishnan A, Surapaneni S, Lichtor T. Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches. Neurosurg Focus. 2003;14(4):e4.PubMedGoogle Scholar
  51. 51.
    Ciappetta P, Salvati M, Capoccia G, Artico M, Raco A, Fortuna A. Spinal glioblastomas: report of seven cases and review of the literature. Neurosurgery. 1991;28(2):302–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Hernández-Durán S, Bregy A, Shah AH, Hanft S, Komotar RJ, Manzano GR. Primary spinal cord glioblastoma multiforme treated with temozolomide. J Clin Neurosci. 2015;22(12):1877–82.  https://doi.org/10.1016/j.jocn.2015.04.017.PubMedCrossRefGoogle Scholar
  53. 53.
    Jallo GI. CUSA EXcel ultrasonic aspiration system. Neurosurgery. 2001;48(3):695–7.PubMedCrossRefGoogle Scholar
  54. 54.
    McGirt MJ, Goldstein IM, Chaichana KL, Tobias ME, Kothbauer KF, Jallo GI. Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery. 2008;63(1):55–60.; discussion 60-51.  https://doi.org/10.1227/01.NEU.0000335070.37943.09.PubMedCrossRefGoogle Scholar
  55. 55.
    Luksik AS, Garzon-Muvdi T, Yang W, Huang J, Jallo GI. Pediatric spinal cord astrocytomas: a retrospective study of 348 patients from the SEER database. J Neurosurg Pediatr. 2017;19(6):711–9.  https://doi.org/10.3171/2017.1.PEDS16528.CrossRefGoogle Scholar
  56. 56.
    Liu A, Sankey EW, Bettegowda C, Burger PC, Jallo GI, Groves ML. Poor prognosis despite aggressive treatment in adults with intramedullary spinal cord glioblastoma. J Clin Neurosci. 2015;22(10):1628–31.  https://doi.org/10.1016/j.jocn.2015.05.008.PubMedCrossRefGoogle Scholar
  57. 57.
    Jallo GI, Kothbauer KF, Epstein FJ. Intrinsic spinal cord tumor resection. Neurosurgery. 2001;49(5):1124–8.PubMedGoogle Scholar
  58. 58.
    McCormick PC, Stein BM. Intramedullary tumors in adults. Neurosurg Clin N Am. 1990;1(3):609–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G. Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery. 2005;56(5):972–81. discussion 972-981PubMedGoogle Scholar
  60. 60.
    Garcés-Ambrossi GL, McGirt MJ, Mehta VA, Sciubba DM, Witham TF, Bydon A, Wolinksy JP, Jallo GI, Gokaslan ZL. Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine. 2009;11(5):591–9.  https://doi.org/10.3171/2009.4.SPINE08159.PubMedCrossRefGoogle Scholar
  61. 61.
    Sandler HM, Papadopoulos SM, Thornton AF, Ross DA. Spinal cord astrocytomas: results of therapy. Neurosurgery. 1992;30(4):490–3.PubMedGoogle Scholar
  62. 62.
    Kothbauer K, Deletis V, Epstein FJ. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg. 1997;26(5):247–54.  https://doi.org/10.1159/000121199.PubMedCrossRefGoogle Scholar
  63. 63.
    Kukreja S, Ambekar S, Sharma M, Sin AH, Nanda A. Outcome predictors in the management of spinal myxopapillary ependymoma: an integrative survival analysis. World Neurosurg. 2015;83(5):852–9.  https://doi.org/10.1016/j.wneu.2014.08.006.PubMedCrossRefGoogle Scholar
  64. 64.
    McGirt MJ, Chaichana KL, Atiba A, Bydon A, Witham TF, Yao KC, Jallo GI. Incidence of spinal deformity after resection of intramedullary spinal cord tumors in children who underwent laminectomy compared with laminoplasty. J Neurosurg Pediatr. 2008;1(1):57–62.  https://doi.org/10.3171/PED-08/01/057.PubMedCrossRefGoogle Scholar
  65. 65.
    McGirt MJ, Garcés-Ambrossi GL, Parker SL, Sciubba DM, Bydon A, Wolinksy JP, Gokaslan ZL, Jallo G, Witham TF. Short-term progressive spinal deformity following laminoplasty versus laminectomy for resection of intradural spinal tumors: analysis of 238 patients. Neurosurgery. 2010;66(5):1005–12.  https://doi.org/10.1227/01.NEU.0000367721.73220.C9.PubMedCrossRefGoogle Scholar
  66. 66.
    Klekamp J. Spinal ependymomas. Part 1: Intramedullary ependymomas. Neurosurg Focus. 2015;39(2):E6.  https://doi.org/10.3171/2015.5.FOCUS15161.PubMedCrossRefGoogle Scholar
  67. 67.
    Samii M, Klekamp J. Surgical results of 100 intramedullary tumors in relation to accompanying syringomyelia. Neurosurgery. 1994;35(5):865–73. discussion 873CrossRefGoogle Scholar
  68. 68.
    Jallo GI, Freed D, Epstein FJ. Spinal cord gangliogliomas: a review of 56 patients. J Neuro-Oncol. 2004;68(1):71–7.CrossRefGoogle Scholar
  69. 69.
    Minehan KJ, Brown PD, Scheithauer BW, Krauss WE, Wright MP. Prognosis and treatment of spinal cord astrocytoma. Int J Radiat Oncol Biol Phys. 2009;73(3):727–33.  https://doi.org/10.1016/j.ijrobp.2008.04.060.PubMedCrossRefGoogle Scholar
  70. 70.
    Samartzis D, Gillis CC, Shih P, O'Toole JE, Fessler RG. Intramedullary Spinal Cord Tumors: Part II-Management Options and Outcomes. Global Spine J. 2016;6(2):176–85.  https://doi.org/10.1055/s-0035-1550086.PubMedCrossRefGoogle Scholar
  71. 71.
    Ahmed R, Menezes AH, Awe OO, Torner JC. Long-term disease and neurological outcomes in patients with pediatric intramedullary spinal cord tumors. J Neurosurg Pediatr. 2014;13(6):600–12.  https://doi.org/10.3171/2014.1.PEDS13316.PubMedCrossRefGoogle Scholar
  72. 72.
    Adams H, Avendaño J, Raza SM, Gokaslan ZL, Jallo GI, Quiñones-Hinojosa A. Prognostic factors and survival in primary malignant astrocytomas of the spinal cord: a population-based analysis from 1973 to 2007. Spine (Phila Pa 1976). 2012;37(12):E727–35.  https://doi.org/10.1097/BRS.0b013e31824584c0.CrossRefGoogle Scholar
  73. 73.
    Ottenhausen M, Ntoulias G, Bodhinayake I, Ruppert FH, Schreiber S, Förschler A, Boockvar JA, Jödicke A. Intradural spinal tumors in adults-update on management and outcome. Neurosurg Rev. 2018;  https://doi.org/10.1007/s10143-018-0957-x.
  74. 74.
    Nakamura M, Ishii K, Watanabe K, Tsuji T, Takaishi H, Matsumoto M, Toyama Y, Chiba K. Surgical treatment of intramedullary spinal cord tumors: prognosis and complications. Spinal Cord. 2008;46(4):282–6.  https://doi.org/10.1038/sj.sc.3102130.PubMedCrossRefGoogle Scholar
  75. 75.
    Beyer S, von Bueren AO, Klautke G, Guckenberger M, Kortmann RD, Pietschmann S, Müller K. A Systematic Review on the Characteristics, Treatments and Outcomes of the Patients with Primary Spinal Glioblastomas or Gliosarcomas Reported in Literature until March 2015. PLoS One. 2016;11(2):e0148312.  https://doi.org/10.1371/journal.pone.0148312.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wostrack M, Ringel F, Eicker SO, Jägersberg M, Schaller K, Kerschbaumer J, Thomé C, Shiban E, Stoffel M, Friedrich B, Kehl V, Vajkoczy P, Meyer B, Onken J. Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine. 2018:1–9.  https://doi.org/10.3171/2017.9.SPINE17494.
  77. 77.
    Vijayakumar S, Estes M, Hardy RW, Rosenbloom SA, Thomas FJ. Ependymoma of the spinal cord and cauda equina: a review. Cleve Clin J Med. 1988;55(2):163–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Lee SH, Chung CK, Kim CH, Yoon SH, Hyun SJ, Kim KJ, Kim ES, Eoh W, Kim HJ. Long-term outcomes of surgical resection with or without adjuvant radiation therapy for treatment of spinal ependymoma: a retrospective multicenter study by the Korea Spinal Oncology Research Group. Neuro-Oncology. 2013;15(7):921–9.  https://doi.org/10.1093/neuonc/not038.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Safaee M, Oh MC, Mummaneni PV, Weinstein PR, Ames CP, Chou D, Berger MS, Parsa AT, Gupta N. Surgical outcomes in spinal cord ependymomas and the importance of extent of resection in children and young adults. J Neurosurg Pediatr. 2014;13(4):393–9.  https://doi.org/10.3171/2013.12.PEDS13383.PubMedCrossRefGoogle Scholar
  80. 80.
    Tarapore PE, Modera P, Naujokas A, Oh MC, Amin B, Tihan T, Parsa AT, Ames CP, Chou D, Mummaneni PV, Weinstein PR. Pathology of spinal ependymomas: an institutional experience over 25 years in 134 patients. Neurosurgery. 2013;73(2):247–55.; discussion 255.  https://doi.org/10.1227/01.neu.0000430764.02973.78.PubMedCrossRefGoogle Scholar
  81. 81.
    Boström A, Kanther NC, Grote A, Boström J. Management and outcome in adult intramedullary spinal cord tumours: a 20-year single institution experience. BMC Res Notes. 2014;7:908.  https://doi.org/10.1186/1756-0500-7-908.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Li TY, Chu JS, Xu YL, Yang J, Wang J, Huang YH, Kwan AL, Wang GH. Surgical strategies and outcomes of spinal ependymomas of different lengths: analysis of 210 patients: clinical article. J Neurosurg Spine. 2014;21(2):249–59.  https://doi.org/10.3171/2014.3.SPINE13481.PubMedCrossRefGoogle Scholar
  83. 83.
    Hersh DS, Iyer RR, Garzon-Muvdi T, Liu A, Jallo GI, Groves ML. Instrumented fusion for spinal deformity after laminectomy or laminoplasty for resection of intramedullary spinal cord tumors in pediatric patients. Neurosurg Focus. 2017;43(4):E12.  https://doi.org/10.3171/2017.7.FOCUS17329.PubMedCrossRefGoogle Scholar
  84. 84.
    Yao KC, McGirt MJ, Chaichana KL, Constantini S, Jallo GI. Risk factors for progressive spinal deformity following resection of intramedullary spinal cord tumors in children: an analysis of 161 consecutive cases. J Neurosurg. 2007;107(6 Suppl):463–8.  https://doi.org/10.3171/PED-07/12/463.PubMedCrossRefGoogle Scholar
  85. 85.
    Ahmed R, Menezes AH, Awe OO, Mahaney KB, Torner JC, Weinstein SL. Long-term incidence and risk factors for development of spinal deformity following resection of pediatric intramedullary spinal cord tumors. J Neurosurg Pediatr. 2014;13(6):613–21.  https://doi.org/10.3171/2014.1.PEDS13317.PubMedCrossRefGoogle Scholar
  86. 86.
    Schneider C, Hidalgo ET, Schmitt-Mechelke T, Kothbauer KF. Quality of life after surgical treatment of primary intramedullary spinal cord tumors in children. J Neurosurg Pediatr. 2014;13(2):170–7.  https://doi.org/10.3171/2013.11.PEDS13346.PubMedCrossRefGoogle Scholar
  87. 87.
    Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ. Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg. 2000;93(2 Suppl):183–93.PubMedGoogle Scholar
  88. 88.
    Tobin MK, Geraghty JR, Engelhard HH, Linninger AA, Mehta AI. Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus. 2015;39(2):E14.  https://doi.org/10.3171/2015.5.FOCUS15158.PubMedCrossRefGoogle Scholar
  89. 89.
    O'Sullivan C, Jenkin RD, Doherty MA, Hoffman HJ, Greenberg ML. Spinal cord tumors in children: long-term results of combined surgical and radiation treatment. J Neurosurg. 1994;81(4):507–12.  https://doi.org/10.3171/jns.1994.81.4.0507.PubMedCrossRefGoogle Scholar
  90. 90.
    Minehan KJ, Shaw EG, Scheithauer BW, Davis DL, Onofrio BM. Spinal cord astrocytoma: pathological and treatment considerations. J Neurosurg. 1995;83(4):590–5.  https://doi.org/10.3171/jns.1995.83.4.0590.PubMedCrossRefGoogle Scholar
  91. 91.
    Guss ZD, Moningi S, Jallo GI, Cohen KJ, Wharam MD, Terezakis SA. Management of pediatric spinal cord astrocytomas: outcomes with adjuvant radiation. Int J Radiat Oncol Biol Phys. 2013;85(5):1307–11.  https://doi.org/10.1016/j.ijrobp.2012.11.022.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lober R, Sharma S, Bell B, Free A, Figueroa R, Sheils CW, Lee M, Cowell J. Pediatric primary intramedullary spinal cord glioblastoma. Rare Tumors. 2010;2(3):e48.  https://doi.org/10.4081/rt.2010.e48.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Isaacson SR. Radiation therapy and the management of intramedullary spinal cord tumors. J Neuro-Oncol. 2000;47(3):231–8.CrossRefGoogle Scholar
  94. 94.
    Lin Y, Smith ZA, Wong AP, Melkonian S, Harris DA, Lam S. Predictors of survival in patients with spinal ependymoma. Neurol Res. 2015;37(7):650–5.  https://doi.org/10.1179/1743132815Y.0000000041.PubMedCrossRefGoogle Scholar
  95. 95.
    Sgouros S, Malluci CL, Jackowski A. Spinal ependymomas--the value of postoperative radiotherapy for residual disease control. Br J Neurosurg. 1996;10(6):559–66.PubMedCrossRefGoogle Scholar
  96. 96.
    Bennett EE, Berriochoa C, Habboub G, Brigeman S, Chao ST, Angelov L. Rapid and complete radiological resolution of an intradural cervical cord lung cancer metastasis treated with spinal stereotactic radiosurgery: case report. Neurosurg Focus. 2017;42(1):E10.  https://doi.org/10.3171/2016.9.FOCUS16254.PubMedCrossRefGoogle Scholar
  97. 97.
    Marchetti M, De Martin E, Milanesi I, Fariselli L. Intradural extramedullary benign spinal lesions radiosurgery. Medium- to long-term results from a single institution experience. Acta Neurochir. 2013;155(7):1215–22.  https://doi.org/10.1007/s00701-013-1756-3.PubMedCrossRefGoogle Scholar
  98. 98.
    Hernández-Durán S, Hanft S, Komotar RJ, Manzano GR. The role of stereotactic radiosurgery in the treatment of intramedullary spinal cord neoplasms: a systematic literature review. Neurosurg Rev. 2016;39(2):175–83.; discussion 183.  https://doi.org/10.1007/s10143-015-0654-y.PubMedCrossRefGoogle Scholar
  99. 99.
    Sharma M, Bennett EE, Rahmathulla G, Chao ST, Koech HK, Gregory SN, Emch T, Magnelli A, Meola A, Suh JH, Angelov L. Impact of cervicothoracic region stereotactic spine radiosurgery on adjacent organs at risk. Neurosurg Focus. 2017;42(1):E14.  https://doi.org/10.3171/2016.10.FOCUS16364.PubMedCrossRefGoogle Scholar
  100. 100.
    Juthani RG, Bilsky MH, Vogelbaum MA. Current Management and Treatment Modalities for Intramedullary Spinal Cord Tumors. Curr Treat Options in Oncol. 2015;16(8):39.  https://doi.org/10.1007/s11864-015-0358-0.CrossRefGoogle Scholar
  101. 101.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, Groups EOfRaToCBTaRO, Group NCIoCCT. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.  https://doi.org/10.1016/S1470-2045(09)70025-7.PubMedCrossRefGoogle Scholar
  102. 102.
    Tseng HM, Kuo LT, Lien HC, Liu KL, Liu MT, Huang CY. Prolonged survival of a patient with cervical intramedullary glioblastoma multiforme treated with total resection, radiation therapy, and temozolomide. Anti-Cancer Drugs. 2010;21(10):963–7.  https://doi.org/10.1097/CAD.0b013e32833f2a09.PubMedCrossRefGoogle Scholar
  103. 103.
    Kim WH, Yoon SH, Kim CY, Kim KJ, Lee MM, Choe G, Kim IA, Kim JH, Kim YJ, Kim HJ. Temozolomide for malignant primary spinal cord glioma: an experience of six cases and a literature review. J Neuro-Oncol. 2011;101(2):247–54.  https://doi.org/10.1007/s11060-010-0249-y.CrossRefGoogle Scholar
  104. 104.
    Morais N, Mascarenhas L, Soares-Fernandes JP, Silva A, Magalhães Z, Costa JA. Primary spinal glioblastoma: A case report and review of the literature. Oncol Lett. 2013;5(3):992–6.  https://doi.org/10.3892/ol.2012.1076.PubMedCrossRefGoogle Scholar
  105. 105.
    Gwak SJ, An SS, Yang MS, Joe E, Kim DH, Yoon DH, Kim KN, Ha Y. Effect of combined bevacizumab and temozolomide treatment on intramedullary spinal cord tumor. Spine (Phila Pa 1976). 2014;39(2):E65–73.  https://doi.org/10.1097/BRS.0000000000000070.CrossRefGoogle Scholar
  106. 106.
    Chamberlain MC, Johnston SK. Recurrent spinal cord glioblastoma: salvage therapy with bevacizumab. J Neuro-Oncol. 2011;102(3):427–32.  https://doi.org/10.1007/s11060-010-0330-6.CrossRefGoogle Scholar
  107. 107.
    Gottardo NG, Gajjar A. Chemotherapy for malignant brain tumors of childhood. J Child Neurol. 2008;23(10):1149–59.  https://doi.org/10.1177/0883073808321765.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Reddy AT, Wellons JC. Pediatric high-grade gliomas. Cancer J. 2003;9(2):107–12.PubMedCrossRefGoogle Scholar
  109. 109.
    Sposto R, Ertel IJ, Jenkin RD, Boesel CP, Venes JL, Ortega JA, Evans AE, Wara W, Hammond D. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J Neuro-Oncol. 1989;7(2):165–77.CrossRefGoogle Scholar
  110. 110.
    Strik HM, Effenberger O, Schäfer O, Risch U, Wickboldt J, Meyermann R. A case of spinal glioblastoma multiforme: immunohistochemical study and review of the literature. J Neuro-Oncol. 2000;50(3):239–43.CrossRefGoogle Scholar
  111. 111.
    Cohen KJ, Pollack IF, Zhou T, Buxton A, Holmes EJ, Burger PC, Brat DJ, Rosenblum MK, Hamilton RL, Lavey RS, Heideman RL. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group. Neuro-Oncology. 2011;13(3):317–23.  https://doi.org/10.1093/neuonc/noq191.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Gaspar N, Marshall L, Perryman L, Bax DA, Little SE, Viana-Pereira M, Sharp SY, Vassal G, Pearson AD, Reis RM, Hargrave D, Workman P, Jones C. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res. 2010;70(22):9243–52.  https://doi.org/10.1158/0008-5472.CAN-10-1250.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Parekh C, Jubran R, Erdreich-Epstein A, Panigrahy A, Bluml S, Finlay J, Dhall G. Treatment of children with recurrent high grade gliomas with a bevacizumab containing regimen. J Neuro-Oncol. 2011;103(3):673–80.  https://doi.org/10.1007/s11060-010-0444-x.CrossRefGoogle Scholar
  114. 114.
    Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 2007;13(4):1253–9.  https://doi.org/10.1158/1078-0432.CCR-06-2309.PubMedCrossRefGoogle Scholar
  115. 115.
    Narayana A, Kunnakkat S, Chacko-Mathew J, Gardner S, Karajannis M, Raza S, Wisoff J, Weiner H, Harter D, Allen J. Bevacizumab in recurrent high-grade pediatric gliomas. Neuro-Oncology. 2010;12(9):985–90.  https://doi.org/10.1093/neuonc/noq033.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Perkins SM, Rubin JB, Leonard JR, Smyth MD, El Naqa I, Michalski JM, Simpson JR, Limbrick DL, Park TS, Mansur DB. Glioblastoma in children: a single-institution experience. Int J Radiat Oncol Biol Phys. 2011;80(4):1117–21.  https://doi.org/10.1016/j.ijrobp.2010.03.013.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nir Shimony
    • 1
  • Sara Hartnett
    • 2
  • Brooks Osburn
    • 2
  • Mari Groves
    • 3
    • 4
  • George I. Jallo
    • 1
    • 4
    Email author
  1. 1.Institute for Brain Protection Sciences, Johns Hopkins All Children’s HospitalSt. PetersburgUSA
  2. 2.Department of Neurosurgery and Brain RepairUniversity of South FloridaTampaUSA
  3. 3.Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Department of NeurosurgeryJohns Hopkins School of Medicine and HospitalBaltimoreUSA

Personalised recommendations