Advertisement

Physicochemical Dynamics, Microbial Community Patterns, and Reef Growth in Coral Reefs of the Central Red Sea

  • Anna Roik
  • Maren Ziegler
  • Christian R. Voolstra
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

Coral reefs in the Red Sea belong to the most diverse and productive reef ecosystems worldwide, although they are exposed to strong seasonal variability, high temperature, and high salinity. These factors are considered stressful for coral reef biota and challenge reef growth in other oceans, but coral reefs in the Red Sea thrive despite these challenges. In the central Red Sea high temperatures, high salinities, and low dissolved oxygen on the one hand reflect conditions that are predicted for ‘future oceans’ under global warming. On the other hand, alkalinity and other carbonate chemistry parameters are considered favourable for coral growth. In coral reefs of the central Red Sea, temperature and salinity follow a seasonal cycle, while chlorophyll and inorganic nutrients mostly vary spatially, and dissolved oxygen and pH fluctuate on the scale of hours to days. Within these strong environmental gradients micro- and macroscopic reef communities are dynamic and demonstrate plasticity and acclimatisation potential. Epilithic biofilm communities of bacteria and algae, crucial for the recruitment of reef-builders, undergo seasonal community shifts that are mainly driven by changes in temperature, salinity, and dissolved oxygen. These variables are predicted to change with the progression of global environmental change and suggest an immediate effect of climate change on the microbial community composition of biofilms. Corals are so-called holobionts and associate with a variety of microbial organisms that fulfill important functions in coral health and productivity. For instance, coral-associated bacterial communities are more specific and less diverse than those of marine biofilms, and in many coral species in the central Red Sea they are dominated by bacteria from the genus Endozoicomonas. Generally, coral microbiomes align with ecological differences between reef sites. They are similar at sites where these corals are abundant and successful. Coral microbiomes reveal a measurable footprint of anthropogenic influence at polluted sites. Coral-associated communities of endosymbiotic dinoflagellates in central Red Sea corals are dominated by Symbiodinium from clade C. Some corals harbour the same specific symbiont with a high physiological plasticity throughout their distribution range, while others maintain a more flexible association with varying symbionts of high physiological specificity over depths, seasons, or reef locations. The coral-Symbiodinium endosymbiosis drives calcification of the coral skeleton, which is a key process that provides maintenance and formation of the reef framework. Calcification rates and reef growth are not higher than in other coral reef regions, despite the beneficial carbonate chemistry in the central Red Sea. This may be related to the comparatively high temperatures, as indicated by reduced summer calcification and long-term slowing of growth rates that correlate with ocean warming trends. Indeed, thermal limits of abundant coral species in the central Red Sea may have been exceeded, as evidenced by repeated mass bleaching events during previous years. Recent comprehensive baseline data from central Red Sea reefs allow for insight into coral reef functioning and for quantification of the impacts of environmental change in the region.

References

  1. Achituv Y, Dubinsky Z (1990) Evolution and zoogeography of coral reefs. Ecosystems of the world. Elsevier, Amsterdam, pp 1–9Google Scholar
  2. Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs an ecosystem in transition. Springer, Amsterdam, pp 119–150CrossRefGoogle Scholar
  3. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc Lond B Biol Sci 276:3019–3025.  https://doi.org/10.1098/rspb.2009.0339CrossRefGoogle Scholar
  4. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836.  https://doi.org/10.1371/journal.pone.0002836CrossRefGoogle Scholar
  5. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105:17442–17446.  https://doi.org/10.1073/pnas.0804478105CrossRefGoogle Scholar
  6. Arnold S, Steneck R, Mumby P (2010) Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol-Prog Ser 91–105.  https://doi.org/10.3354/meps08724CrossRefGoogle Scholar
  7. Atkinson MJ, Birk Y, Rosenthal H (2001) Evaluation of pollution in the Gulf of Eilat. Report for the Ministries of Infrastructure, Environment and Agriculture, prepared by the International Expert Team (IET)Google Scholar
  8. Badran MI (2001) Dissolved oxygen, chlorophyll a and nutrients: seasonal cycles in waters of the Gulf of Aquaba, Red Sea. Aquat Ecosyst Health Manag 4:139–150.  https://doi.org/10.1080/14634980127711CrossRefGoogle Scholar
  9. Barott KL, Rodriguez-Brito B, Janouškovec J, Marhaver KL, Smith JE, Keeling P, Rohwer FL (2011) Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol 13:1192–1204.  https://doi.org/10.1111/j.1462-2920.2010.02419.xCrossRefGoogle Scholar
  10. Barott KL, Rohwer FL (2012) Unseen players shape benthic competition on coral reefs. Trends Microbiol 20:621–628.  https://doi.org/10.1016/j.tim.2012.08.004CrossRefGoogle Scholar
  11. Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530.  https://doi.org/10.5194/bg-7-2509-2010CrossRefGoogle Scholar
  12. Battin TJ, Kaplan LA, Denis Newbold J, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442.  https://doi.org/10.1038/nature02152CrossRefGoogle Scholar
  13. Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013) The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol 79(15):4759–4762.  https://doi.org/10.1128/AEM.00695-13CrossRefGoogle Scholar
  14. Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213.  https://doi.org/10.1016/j.pocean.2009.04.011CrossRefGoogle Scholar
  15. Benayahu Y, Loya Y (1977) Space partitioning by stony corals, soft corals and benthic algae on the coral reefs of the northern Gulf of Eilat (Red Sea). Helgoländer Wiss Meeresunters 30:362–382.  https://doi.org/10.1007/BF02207848CrossRefGoogle Scholar
  16. Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JEM, Khalil MT, Miyake S, Mughal MR, Spaet JLY, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748.  https://doi.org/10.1007/s00338-013-1055-8CrossRefGoogle Scholar
  17. Bongaerts P, Frade PR, Ogier JJ, Hay KB, Van Bleijswijk J, Englebert N, Vermeij MJA, Bak RPM, Visser PM, Hoegh-Guldberg O (2013) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol Biol 13:205.  https://doi.org/10.1186/1471-2148-13-205CrossRefGoogle Scholar
  18. Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226.  https://doi.org/10.1371/journal.pbio.1002226CrossRefGoogle Scholar
  19. Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Ann Rev Microbiol.  https://doi.org/10.1146/annurev-micro-102215-095440CrossRefGoogle Scholar
  20. Bouwmeester J (2014) Reproduction patterns of scleractinian corals in the central Red Sea. PhD Thesis, KAUST (King Abdullah University of Science and Technology), Saudi ArabiaGoogle Scholar
  21. Boyd P, Hutchins D (2012) Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar Ecol Prog Ser 470:125–135.  https://doi.org/10.3354/meps10121CrossRefGoogle Scholar
  22. Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326.  https://doi.org/10.2307/1312064CrossRefGoogle Scholar
  23. Buddemeier RW (1997) Symbiosis: making light work of adaptation. Nature 388:229–230.  https://doi.org/10.1038/40755CrossRefGoogle Scholar
  24. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325.  https://doi.org/10.1126/science.1190182CrossRefGoogle Scholar
  25. Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260.  https://doi.org/10.1016/j.jembe.2003.10.015CrossRefGoogle Scholar
  26. Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375–390Google Scholar
  27. Chiellini C, Iannelli R, Verni F et al (unpublished) Composition of bacterial communities in Leghorn Harbor seabed sediments. Submitted 2012. http://www.ncbi.nlm.nih.gov/nuccore/HE804021.1
  28. Clausen CD, Roth AA (1975) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar Biol 33:93–100.  https://doi.org/10.1007/BF00390713CrossRefGoogle Scholar
  29. Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BE, Van Oppen MJ (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc B Biol Sci 278:1840–1850CrossRefGoogle Scholar
  30. Couce E, Ridgwell A, Hendy EJ (2012) Environmental controls on the global distribution of shallow-water coral reefs. J Biogeogr 39:1508–1523.  https://doi.org/10.1111/j.1365-2699.2012.02706.xCrossRefGoogle Scholar
  31. Crossland CJ (1984) Seasonal variations in the rates of calcification and productivity in the coral Acropora formosa on a high-latitude reef. Mar Ecol Prog Ser 15:135–140CrossRefGoogle Scholar
  32. Dang H, Li T, Chen M, Huang G (2008) Cross-ocean distribution of rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60.  https://doi.org/10.1128/AEM.01400-07CrossRefGoogle Scholar
  33. D’Angelo C, Wiedenmann J (2014) Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain 7:82–93.  https://doi.org/10.1016/j.cosust.2013.11.029CrossRefGoogle Scholar
  34. Davis KA, Lentz SJ, Pineda J, Farrar JT, Starczak VR, Churchill JH (2011) Observations of the thermal environment on Red Sea platform reefs: a heat budget analysis. Coral Reefs 30:25–36.  https://doi.org/10.1007/s00338-011-0740-8CrossRefGoogle Scholar
  35. DeVantier L, Turak E, Al-Shaikh K, De’ath G (2000) Coral communities of the central-northern Saudi Arabian Red Sea. Fauna Arab 18:23–66Google Scholar
  36. Done TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1:95–107.  https://doi.org/10.1007/BF00301691CrossRefGoogle Scholar
  37. Drupp P, Carlo EHD, Mackenzie FT, Bienfang P, Sabine C (2011) Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay. Hawaii. Aquat Geochem 17:473–498.  https://doi.org/10.1007/s10498-010-9115-yCrossRefGoogle Scholar
  38. Dullo W-C, Reijmer J, Schuhmacher H, Eisenhauer A, Hassan M, Heiss G (1996) Holocene reef growth and recent carbonate production in the Red Sea. Global and regional controls of biodenic sedimentation. Gottinger Arb Geol Palaont, Gottingen, pp 13–17Google Scholar
  39. Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Nino at Uva Island in the eastern Pacific. Coral Reefs 15:109–119.  https://doi.org/10.1007/BF01771900CrossRefGoogle Scholar
  40. Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull Mar Sci 69:171–186Google Scholar
  41. Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Pollut Bull 40:404–425CrossRefGoogle Scholar
  42. Edwards AJ, Head SM (1987) Red sea. Key environments series. Pergamon Press, OxfordGoogle Scholar
  43. Enochs IC (2015) Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for the persistence of the Florida Reef Tract. Bull Mar Sci 91:271–290.  https://doi.org/10.5343/bms.2014.1045CrossRefGoogle Scholar
  44. Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob Change Biol 19:3581–3591.  https://doi.org/10.1111/gcb.12334CrossRefGoogle Scholar
  45. Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Change Biol 19:3640–3647.  https://doi.org/10.1111/gcb.12356CrossRefGoogle Scholar
  46. Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM (2008) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703.  https://doi.org/10.1111/j.1365-294X.2007.03612.xCrossRefGoogle Scholar
  47. Furby KA, Bouwmeester J, Berumen ML (2013) Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513.  https://doi.org/10.1007/s00338-012-0998-5CrossRefGoogle Scholar
  48. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183.  https://doi.org/10.1093/icb/39.1.160CrossRefGoogle Scholar
  49. Glynn PW (1997) Bioerosion and coral-reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 68–94CrossRefGoogle Scholar
  50. Glynn PW, Manzello DP (2015) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Coral reefs in the anthropocene. Springer, Netherlands, pp 67–97CrossRefGoogle Scholar
  51. Gove JM, Williams GJ, McManus MA, Heron SF, Sandin SA, Vetter OJ, Foley DG (2013) Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PLoS ONE 8:e61974.  https://doi.org/10.1371/journal.pone.0061974CrossRefGoogle Scholar
  52. Graham NAJ (2014) Habitat complexity: coral structural loss leads to fisheries declines. Curr Biol 24:R359–R361.  https://doi.org/10.1016/j.cub.2014.03.069CrossRefGoogle Scholar
  53. Gray SEC, DeGrandpre MD, Langdon C, Corredor JE (2012) Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Glob Biogeochem Cycles.  https://doi.org/10.1029/2011GB004114CrossRefGoogle Scholar
  54. Haas AF, Nelson CE, Rohwer F, Wegley-Kelly L, Quistad SD, Carlson CA, Leichter JJ, Hatay M, Smith JE (2013) Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1:e108.  https://doi.org/10.7717/peerj.108CrossRefGoogle Scholar
  55. Hadaidi G, Röthig T, Yum LK, Ziegler M, Arif C, Roder C, Burt J, Voolstra CR (2017) Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian seas. Sci Rep 7:45362.  https://doi.org/10.1038/srep45362CrossRefGoogle Scholar
  56. Heiss GA (1995) Carbonate production by scleractinian corals at Aqaba, Gulf of Aqaba, Red Sea. Facies 33:19–34.  https://doi.org/10.1007/BF02537443CrossRefGoogle Scholar
  57. Helmuth B, Russell BD, Connell SD, Dong Y, Harley C, Lima FP, Sará G, Williams GA, Mieszkowska N (2014) Beyond long-term averages: making biological sense of a rapidly changing world. Clim Change Responses 1:6CrossRefGoogle Scholar
  58. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654.  https://doi.org/10.1038/nrmicro2839CrossRefGoogle Scholar
  59. Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279CrossRefGoogle Scholar
  60. Hibino K, van Woesik R (2000) Spatial differences and seasonal changes of net carbonate accumulation on some coral reefs of the Ryukyu Islands, Japan. J Exp Mar Biol Ecol 252:1–14.  https://doi.org/10.1016/S0022-0981(00)00214-8CrossRefGoogle Scholar
  61. Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): Applications to the nature of reef systems in the fossil record. J Sediment Res 60:335–360Google Scholar
  62. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933.  https://doi.org/10.1126/science.1085046CrossRefGoogle Scholar
  63. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to cimate change. Curr Biol 17:360–365.  https://doi.org/10.1016/j.cub.2006.12.049CrossRefGoogle Scholar
  64. Hume BCC, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J (2013) Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull 72:313–322.  https://doi.org/10.1016/j.marpolbul.2012.11.032CrossRefGoogle Scholar
  65. Hume BCC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Natl Acad Sci 113:4416–4421.  https://doi.org/10.1073/pnas.1601910113CrossRefGoogle Scholar
  66. Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the Eastern Pacific. Proc R Soc B Biol Sci 271:1757–1763.  https://doi.org/10.1098/rspb.2004.2757CrossRefGoogle Scholar
  67. IPCC Working Group I (2013) IPCC, 2013: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker T, Quin D, Plattner G-K, et al. (eds) Cambridge University Press, New YorkGoogle Scholar
  68. Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C, Voolstra CR (2013) In situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea coral Acropora hemprichii. PLoS ONE 8:e62091.  https://doi.org/10.1371/journal.pone.0062091CrossRefGoogle Scholar
  69. Jessen C, Voolstra CR, Wild C (2014) In situ effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the central Red Sea. PeerJ 2:e339.  https://doi.org/10.7717/peerj.339CrossRefGoogle Scholar
  70. Jones NS, Ridgwell A, Hendy EJ (2015) Evaluation of coral reef carbonate production models at a global scale. Biogeosciences 12:1339–1356.  https://doi.org/10.5194/bg-12-1339-2015CrossRefGoogle Scholar
  71. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199–229.  https://doi.org/10.1146/annurev.marine.010908.163855CrossRefGoogle Scholar
  72. Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg CH, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Curr Biol 23:912–918.  https://doi.org/10.1016/j.cub.2013.04.020CrossRefGoogle Scholar
  73. Kirk Harris J, Gregory Caporaso J, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7:50–60.  https://doi.org/10.1038/ismej.2012.79CrossRefGoogle Scholar
  74. Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159CrossRefGoogle Scholar
  75. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1.  https://doi.org/10.1093/nar/gks808CrossRefGoogle Scholar
  76. Kotb MM (2001) Growth rates of three reef-building coral species in the northern Red Sea. Egypt. Egypt J Aquat Biol Fish 5:165–185CrossRefGoogle Scholar
  77. Kuffner IB, Hickey TD, Morrison JM (2013) Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida keys (USA) outer-reef tract. Coral Reefs 32:987–997.  https://doi.org/10.1007/s00338-013-1047-8CrossRefGoogle Scholar
  78. Kürten B, Al-Aidaroos AM, Struck U, Khomayis HS, Gharbawi WY, Sommer U (2014) Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J Sea Res 85:379–394.  https://doi.org/10.1016/j.seares.2013.07.008CrossRefGoogle Scholar
  79. Lampert Y, Kelman D, Nitzan Y, Dubinsky Z, Behar A, Hill RT (2008) Phylogenetic diversity of bacteria associated with the mucus of Red Sea corals. FEMS Microbiol Ecol 64:187–198.  https://doi.org/10.1111/j.1574-6941.2008.00458.xCrossRefGoogle Scholar
  80. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycles 14:639–654.  https://doi.org/10.1029/1999GB001195CrossRefGoogle Scholar
  81. Lee OO, Yang J, Bougouffa S, Wang Y, Batang Z, Tian R, Al-Suwailem A, Qian PY (2012) Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol 78:7173–7184.  https://doi.org/10.1128/AEM.01111-12CrossRefGoogle Scholar
  82. Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003.  https://doi.org/10.1890/09-0313.1CrossRefGoogle Scholar
  83. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494.  https://doi.org/10.1126/science.1095733CrossRefGoogle Scholar
  84. Littler M, Littler D (1984) A relative-dominance model for biotic reefs. In: Conference paper: advances in reef sciences. Proc Joint Meeting of the Atlantic Reef Committee and the International Society of Reef Studies, Miami, FloridaGoogle Scholar
  85. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243.  https://doi.org/10.1016/S0022-0981(99)00168-9CrossRefGoogle Scholar
  86. Loya Y, Lubinevsky H, Rosenfeld M, Kramarsky-Winter E (2004) Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar Pollut Bull 49:344–353.  https://doi.org/10.1016/j.marpolbul.2004.06.011CrossRefGoogle Scholar
  87. Luckhurst BE, Luckhurst K (1978) Analysis of the influence of substrate variables on coral reef fish communities. Mar Biol 49:317–323.  https://doi.org/10.1007/BF00455026CrossRefGoogle Scholar
  88. Manasrah R, Raheed M, Badran MI (2006) Relationships between water temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba, Red Sea. Oceanologia 48:237–253Google Scholar
  89. Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci 105:10450–10455. https://doi.org/10.1073/pnas.0712167105CrossRefGoogle Scholar
  90. Marhaver KL, Vermeij MJA, Rohwer F, Sandin SA (2013) Janzen-Connell effects in a broadcast-spawning Caribbean coral: distance-dependent survival of larvae and settlers. Ecology 94:146–160CrossRefGoogle Scholar
  91. Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224.  https://doi.org/10.1007/s00338-004-0369-yCrossRefGoogle Scholar
  92. Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102CrossRefGoogle Scholar
  93. McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: Integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24.  https://doi.org/10.1111/jpy.12262CrossRefGoogle Scholar
  94. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  95. Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, Ravasi T, Hentschel U (2014) Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Mol Ecol 23:1348–1363.  https://doi.org/10.1111/mec.12365CrossRefGoogle Scholar
  96. Monroe AA, Ziegler M, Roik A, Röthig T, Hardenstine RS, Emms MA, Jensen T, Voolstra CR, Berumen ML (2018) In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE 13:e0195814. https://doi.org/10.1371/journal.pone.0195814CrossRefGoogle Scholar
  97. Mumby PJ, van Woesik R (2014) Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress. Curr Biol 24:R413–R423.  https://doi.org/10.1016/j.cub.2014.04.029CrossRefGoogle Scholar
  98. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460.  https://doi.org/10.2307/1297526CrossRefGoogle Scholar
  99. Myshrall KL, Mobberley JM, Green SJ, Visscher PT, Havemann SA, Reid RP, Foster JS (2010) Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8:337–354.  https://doi.org/10.1111/j.1472-4669.2010.00245.xCrossRefGoogle Scholar
  100. Neave MJ, Michell CT, Apprill A, Voolstra CR (2014) Whole-genome sequences of three symbiotic Endozoicomonas strains. Genome Announc 2:e00802–e00814.  https://doi.org/10.1128/genomeA.00802-14CrossRefGoogle Scholar
  101. Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 1–10.  https://doi.org/10.1007/s00253-016-7777-0CrossRefGoogle Scholar
  102. Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR (2017) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J 11(1):186–200.  https://doi.org/10.1038/ismej.2016.95CrossRefGoogle Scholar
  103. Nelson CE, Goldberg SJ, Wegley Kelly L, Haas AF, Smith JE, Rohwer F, Carlson CA (2013) Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–979CrossRefGoogle Scholar
  104. Niggl W, Haas AF, Wild C (2010) Benthic community composition affects O2 availability and variability in a northern Red Sea fringing reef. Hydrobiologia 644:401–405.  https://doi.org/10.1007/s10750-010-0200-4CrossRefGoogle Scholar
  105. Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ (2017) Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Change Biol Feb 24(2):e474–e484.  https://doi.org/10.1111/gcb.13895CrossRefGoogle Scholar
  106. Ochsenkühn MA, Röthig T, D’Angelo C, Wiedenmann J, Voolstra CR (2017) The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci Advances 3:e1602047.  https://doi.org/10.1126/sciadv.1602047CrossRefGoogle Scholar
  107. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 1251336.  https://doi.org/10.1126/science.1251336CrossRefGoogle Scholar
  108. Pantos O, Bythell JC (2006) Bacterial community structure associated with white band disease in the elkhorn coral Acropora palmata determined using culture-independent 16S rRNA technique. Dis Aquat Org 69 (1):79–88. http://www.ncbi.nlm.nih.gov/nuccore/AY323192.1CrossRefGoogle Scholar
  109. Pari N, Peyrot-Clausade M, Le Champion-Alsumard T, Hutchings PA, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119–130CrossRefGoogle Scholar
  110. Perry C, Edinger E, Kench P, Murphy GN, Smithers SG, Steneck RS, Mumby PJ (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31:853–868.  https://doi.org/10.1007/s00338-012-0901-4CrossRefGoogle Scholar
  111. Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth-Sci Rev 86:106–144.  https://doi.org/10.1016/j.earscirev.2007.08.006CrossRefGoogle Scholar
  112. Perry CT, Murphy GN, Graham NAJ, Wilson SK, Januchowski-Hartley FA, East HK (2015) Remote coral reefs can sustain high growth potential and may match future sea-level trends. Sci Rep 5:18289.  https://doi.org/10.1038/srep18289CrossRefGoogle Scholar
  113. Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, Mumby PJ (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nature Commun 4:1402.  https://doi.org/10.1038/ncomms2409CrossRefGoogle Scholar
  114. Pettay DT, Wham DC, Smith RT, Iglesias-Prietoc R, LaJeunessea TC (2015) Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci 201502283.  https://doi.org/10.1073/pnas.1502283112CrossRefGoogle Scholar
  115. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C (2017a) Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Change Biol 23:3838–3848.  https://doi.org/10.1111/gcb.13695CrossRefGoogle Scholar
  116. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR (2017b) Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.01187
  117. Price ARG, Jobbins G, Shepherd ARD, Ormond RFG (1998) An integrated environmental assessment of the Red Sea coast of Saudi Arabia. Environ Conserv 25:65–76CrossRefGoogle Scholar
  118. Purkis S, Riegl B (2005) Spatial and temporal dynamics of Arabian Gulf coral assemblages quantified from remote-sensing and in situ monitoring data. Mar Ecol Prog Ser 287:99–113.  https://doi.org/10.3354/meps287099CrossRefGoogle Scholar
  119. Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497.  https://doi.org/10.1016/j.tim.2015.03.008CrossRefGoogle Scholar
  120. Raitsos DE, Hoteit I, Prihartato PK, Chronis T, Triantafyllou G, Abualnaja Y (2011) Abrupt warming of the Red Sea. Geophys Res Lett 38:L14601.  https://doi.org/10.1029/2011GL047984CrossRefGoogle Scholar
  121. Raitsos DE, Pradhan Y, Brewin RJW, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS ONE 8:e64909.  https://doi.org/10.1371/journal.pone.0064909CrossRefGoogle Scholar
  122. Reaka-Kudla ML (1997) The global biodiversity of coral reefs: a comparison with rainforests. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. The Joseph Henry Press, USA, pp 83–106Google Scholar
  123. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073.  https://doi.org/10.1111/j.1462-2920.2006.01148.xCrossRefGoogle Scholar
  124. Riegl B (1999) Corals in a non-reef setting in the southern Arabian Gulf (Dubai, UAE): Fauna and community structure in response to recurring mass mortality. Coral Reefs 18:63–73.  https://doi.org/10.1007/s003380050156CrossRefGoogle Scholar
  125. Roder C, Arif C, Bayer T, Aranda M, Daniels C, Shibl A, Chavanich S, Voolstra CR (2014a) Bacterial profiling of White Plague disease in a comparative coral species framework. ISME J 8:31–39.  https://doi.org/10.1038/ismej.2013.127CrossRefGoogle Scholar
  126. Roder C, Arif C, Daniels C, Weil E, Voolstra CR (2014b) Bacterial profiling of White Plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol Ecol 23:965–974.  https://doi.org/10.1111/mec.12638CrossRefGoogle Scholar
  127. Roder C, Bayer T, Aranda M, Kruse M, Voolstra CR (2015) Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol Ecol 24:3501–3511.  https://doi.org/10.1111/mec.13251CrossRefGoogle Scholar
  128. Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005.  https://doi.org/10.1016/j.cub.2014.03.026CrossRefGoogle Scholar
  129. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  130. Roik A (2016) Coral reef functioning along a cross-shelf environmental gradient: abiotic and biotic drivers of coral reef growth in the Red Sea. PhD Dissertation, King Abdullah University of Science and Technology (KAUST), Saudi ArabiaGoogle Scholar
  131. Roik A, Roder C, Röthig T, Voolstra CR (2015) Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea. Coral Reefs 1–13.  https://doi.org/10.1007/s00338-015-1383-yCrossRefGoogle Scholar
  132. Roik A, Röthig T, Roder C, Ziegler M, Kremb SG, Voolstra CR (2016) Year-long monitoring of physico-chemical and biological variables provide a comparative baseline of coral reef functioning in the central Red Sea. PLoS ONE 11:e0163939.  https://doi.org/10.1371/journal.pone.0163939CrossRefGoogle Scholar
  133. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362.  https://doi.org/10.1038/nrmicro1635CrossRefGoogle Scholar
  134. Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, Aranda Lastra MI, Voolstra CR (2016a) Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Microb Symbioses 3:234.  https://doi.org/10.3389/fmars.2016.00234CrossRefGoogle Scholar
  135. Röthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR (2016b) Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol 25:1308–1323.  https://doi.org/10.1111/mec.13567CrossRefGoogle Scholar
  136. Sawall Y, Al-Sofyani A, Banguera-Hinestroza E, Voolstra CR (2014) Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea. PLoS ONE 9:e103179.  https://doi.org/10.1371/journal.pone.0103179CrossRefGoogle Scholar
  137. Sawall Y, Al-Sofyani A, Hohn S, Banguera-Hinestroza E, Voolstra CR, Wahl M (2015) Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci Rep 5:8940.  https://doi.org/10.1038/srep08940CrossRefGoogle Scholar
  138. Sawall Y, Richter C, Ramette A (2012) Effects of eutrophication, seasonality and macrofouling on the diversity of bacterial biofilms in equatorial coral reefs. PLoS ONE 7:e39951.  https://doi.org/10.1371/journal.pone.0039951CrossRefGoogle Scholar
  139. Schaffelke B, Carleton J, Skuza M, Zagorskis I, Furnas MJ (2012) Water quality in the inshore Great Barrier Reef lagoon: implications for long-term monitoring and management. Mar Pollut Bull 65:249–260.  https://doi.org/10.1016/j.marpolbul.2011.10.031CrossRefGoogle Scholar
  140. Schlichter D, Fricke HW, Weber W (1986) Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar Biol 91:403–407.  https://doi.org/10.1007/BF00428634CrossRefGoogle Scholar
  141. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293CrossRefGoogle Scholar
  142. Schuhmacher H, Loch K, Loch W, See WR (2005) The aftermath of coral bleaching on a Maldivian reef—a quantitative study. Facies 51:80–92.  https://doi.org/10.1007/s10347-005-0020-6CrossRefGoogle Scholar
  143. Sebens KP (1994) Biodiversity of coral reefs: what are we losing and why? Am Zool 34:115–133.  https://doi.org/10.1093/icb/34.1.115CrossRefGoogle Scholar
  144. Sharp KH, Sneed JM, Ritchie KB, Mcdaniel L, Paul VJ (2015) Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biol Bull 228:98–107CrossRefGoogle Scholar
  145. Sheppard C, Price A, Roberts C (1992) Marine ecology of the Arabian region: patterns and processes in extreme tropical environments. Academic Press, San Diego, CA, p 358Google Scholar
  146. Siboni N, Martinez S, Kushmaro A (2009) Conditioning film and initial biofilm formation on electrochemical CaCO3 deposition on a metallic net in the marine environment. http://www.ncbi.nlm.nih.gov/nuccore/FJ594871.1
  147. Silverman J, Lazar B, Erez J (2007) Community metabolism of a coral reef exposed to naturally varying dissolved inorganic nutrient loads. Biogeochemistry 84:67–82.  https://doi.org/10.1007/s10533-007-9075-5CrossRefGoogle Scholar
  148. Simister R, Taylor MW, Tsai P, Webster N (2012) Sponge-microbe associations survive high nutrients and temperatures. PLoS ONE 7:e52220.  https://doi.org/10.1371/journal.pone.0052220CrossRefGoogle Scholar
  149. Sneed JM, Ritson-Williams R, Paul VJ (2015) Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME J 9:2527–2536.  https://doi.org/10.1038/ismej.2015.67CrossRefGoogle Scholar
  150. Spalding MD, Brown BE (2015) Warm-water coral reefs and climate change. Science 350:769–771.  https://doi.org/10.1126/science.aad0349CrossRefGoogle Scholar
  151. Steiner Z, Erez J, Shemesh A, Yam R, Katz A, Lazar B (2014) Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean. Proc Natl Acad Sci 111(46):16303–16308.  https://doi.org/10.1073/pnas.1414323111CrossRefGoogle Scholar
  152. Sultan M, Sefry S, AbuAbdallah M (2015) Impacts of climate change on the Red Sea region and its watersheds, Saudi Arabia. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin Heidelberg, pp 363–377Google Scholar
  153. Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS ONE 5:e9554.  https://doi.org/10.1371/journal.pone.0009554CrossRefGoogle Scholar
  154. Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries Coasts 25:743–766CrossRefGoogle Scholar
  155. Taracido LJ, Gonzalez JM, Pendon C et al (unpublished) Bacterial community in marine biofouling with antifouling treatment in heat exchangers. Submitted 2011.http://www.ncbi.nlm.nih.gov/nuccore/GQ274234.1
  156. Uthicke S, Furnas M, Lønborg C (2014) Coral reefs on the edge? Carbon chemistry on inshore reefs of the Great Barrier Reef. PLoS ONE 9:e109092.  https://doi.org/10.1371/journal.pone.0109092CrossRefGoogle Scholar
  157. van Hoytema N, Bednarz VN, Cardini U, Naumann MS, Al-Horani FA, Wild C (2016) The influence of seasonality on benthic primary production in a Red Sea coral reef. Mar Biol 163:1–14.  https://doi.org/10.1007/s00227-015-2787-5CrossRefGoogle Scholar
  158. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci 105:15452–15457.  https://doi.org/10.1073/pnas.0803833105CrossRefGoogle Scholar
  159. Webster FJ, Babcock RC, Van Keulen M, Loneragan NR (2015) Macroalgae inhibits larval settlement and increases recruit mortality at Ningaloo Reef. Western Australia. PLoS ONE 10:e0124162.  https://doi.org/10.1371/journal.pone.0124162CrossRefGoogle Scholar
  160. Webster NS, Smith LD, Heyward AJ, Watts JE, Webb RI, Blackall LL, Negri AP (2004) Metamorphosis of a Scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70:1213–1221.  https://doi.org/10.1128/AEM.70.2.1213-1221.2004CrossRefGoogle Scholar
  161. Webster NS, Soo R, Cobb R, Negri AP (2011) Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J 5:759–770.  https://doi.org/10.1038/ismej.2010.152CrossRefGoogle Scholar
  162. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066.  https://doi.org/10.1242/jeb.009597CrossRefGoogle Scholar
  163. Werner U, Blazejak A, Bird P et al (unpublished) Photosynthesis in coral reef sediments (Heron Reef, Australia). Submitted 2006. http://www.ncbi.nlm.nih.gov/nuccore/AM177412.1
  164. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F, Postle AD, Achterberg EP (2013) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:160–164.  https://doi.org/10.1038/nclimate1661CrossRefGoogle Scholar
  165. Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshw Res 50:867–878CrossRefGoogle Scholar
  166. Wilson SS, Bellwood DD, Choat HJ, Furnas MM (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41:279–309Google Scholar
  167. Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7:e45124.  https://doi.org/10.1371/journal.pone.0045124CrossRefGoogle Scholar
  168. Witt V, Wild C, Uthicke S (2012) Terrestrial runoff controls the bacterial community composition of biofilms along a water quality gradient in the Great Barrier Reef. Appl Environ Microbiol 78:7786–7791.  https://doi.org/10.1128/AEM.01623-12CrossRefGoogle Scholar
  169. Witt V, Wild C, Uthicke S (2011) Effect of substrate type on bacterial community composition in biofilms from the Great Barrier Reef. FEMS Microbiol Lett 323:188–195.  https://doi.org/10.1111/j.1574-6968.2011.02374.xCrossRefGoogle Scholar
  170. Wood R (1999) Reef evolution. Oxford University Press on Demand, Oxford, UKGoogle Scholar
  171. Yeakel KL, Andersson AJ, Bates NR, Noyes TJ, Collins A, Garley R (2015) Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity. Proc Natl Acad Sci 112:14512–14517.  https://doi.org/10.1073/pnas.1507021112CrossRefGoogle Scholar
  172. Ziegler M, Roder CM, Büchel C, Voolstra CR (2014) Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. Coral Reefs.  https://doi.org/10.1007/s00338-014-1192-8CrossRefGoogle Scholar
  173. Ziegler M, Roder C, Büchel C, Voolstra C (2015a) Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association. Mar Ecol Prog Ser 533:149–161.  https://doi.org/10.3354/meps11365CrossRefGoogle Scholar
  174. Ziegler M, Roder CM, Büchel C, Voolstra CR (2015b) Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Mar Mol Biol Ecol 2:4.  https://doi.org/10.3389/fmars.2015.00004CrossRefGoogle Scholar
  175. Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar Pollut Bull 105:629–640.  https://doi.org/10.1016/j.marpolbul.2015.12.045CrossRefGoogle Scholar
  176. Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, Voolstra CR (2017a) Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J Biogeogr 44(3):674–686.  https://doi.org/10.1111/jbi.12913CrossRefGoogle Scholar
  177. Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017b) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213.  https://doi.org/10.1038/ncomms14213CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anna Roik
    • 1
    • 2
  • Maren Ziegler
    • 2
    • 3
  • Christian R. Voolstra
    • 2
  1. 1.Marine MicrobiologyGEOMAR Helmholtz Centre for Ocean ResearchKielGermany
  2. 2.Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  3. 3.Department of Animal Ecology and SystematicsJustus Liebig University GiessenGiessenGermany

Personalised recommendations